Loading…

Landscape evolution and geodynamic controls in the Gulf of Cadiz (Huelva coast, SW Spain) during the Late Quaternary

The coastal evolution of the El Abalario area (Huelva, southern Spain) during the Late Pleistocene and Holocene is reinterpreted after a refinement of the available geochronology by means of optically stimulated luminescence (OSL) dating. New data come from the analysis of soft sediment deformation,...

Full description

Saved in:
Bibliographic Details
Published in:Geomorphology (Amsterdam, Netherlands) Netherlands), 2005-06, Vol.68 (3), p.269-290
Main Authors: Zazo, Cari, Mercier, Norbert, Silva, Pablo G., Dabrio, Cristino J., Goy, José Luis, Roquero, Elvira, Soler, Vicente, Borja, Francisco, Lario, Javier, Polo, Dolores, de Luque, Luis
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The coastal evolution of the El Abalario area (Huelva, southern Spain) during the Late Pleistocene and Holocene is reinterpreted after a refinement of the available geochronology by means of optically stimulated luminescence (OSL) dating. New data come from the analysis of soft sediment deformation, palaeosols, geomorphological mapping, and published seismic surveys on the onshore and offshore Gulf of Cadiz. The present structure of El Abalario dome resulted from the complex interaction of littoral-catchment processes and sea-level changes upon an emergent coastal plain, conditioned by the upwarping of the underlying Pliocene–Pleistocene prograding deltaic sequence. Upwarping is probably related to escape of over-pressurized fluids, accompanied by dewatering, prior to (?) and during OIS (Oxygen Isotopic Stage) 5. Continued upwarping produced the large NW–SE gravitational fault of Torre del Loro (TLF) in the southwestern flank of the dome, roughly parallel to the present coastline during OIS 5–OIS 4. The resulting escarpment favoured the accumulation of aeolian sand dunes (units U1, U2, and U3) from OIS 5 to early OIS 1. Unit U1 (OIS 5) ends upwards in a supersurface with a thick weathering profile that suggests moist and temperate climatic conditions. Unit U2 accumulated mainly during OIS 4 and OIS 3 with prevailing W/E winds. The supersurface between U2 and U3 records a part of OIS 2, with relative low sea level. Sedimentation of unit U3 took place during the Last Deglaciation (radiocarbon and OSL ages) with prevailing W/SW winds, under a temperate moist climate, that became more arid towards the top (Holocene). A major supersurface with an iron crust-like layer (SsFe) developed during the Holocene Climatic Optimum (OIS 1) under wetter and more temperate conditions than before, fossilizing the TLF. The supersurface is covered by younger aeolian dunes (U4, U5, U6, and U7) transported by W–SW winds since the Late Neolithic–Chalcolithic cultural period (∼5.0 ky cal BP).
ISSN:0169-555X
1872-695X
DOI:10.1016/j.geomorph.2004.11.022