Loading…

NGAUGE: A decision support system to optimise N fertilisation of British grassland for economic and environmental goals

The poor efficiency with which nitrogen (N) is often used on grassland farms is well documented, as are the potential consequences of undesirable emissions of nitrogen. As fertiliser represents a major input of nitrogen to such systems, its improved management has good potential for increasing the e...

Full description

Saved in:
Bibliographic Details
Published in:Agriculture, ecosystems & environment ecosystems & environment, 2005-08, Vol.109 (1), p.20-39
Main Authors: Brown, L., Scholefield, D., Jewkes, E.C., Lockyer, D.R., del Prado, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The poor efficiency with which nitrogen (N) is often used on grassland farms is well documented, as are the potential consequences of undesirable emissions of nitrogen. As fertiliser represents a major input of nitrogen to such systems, its improved management has good potential for increasing the efficiency of nitrogen use and enhancing environmental and economic performance. This paper describes the development, structure and potential application of a new decision support system for fertiliser management for British grassland. The underlying empirically-based model simulates monthly nitrogen flows within and between the main components of the livestock production system according to user inputs describing site conditions and farm management characteristics. The user-friendly decision support system (‘NGAUGE’) has a user interface that was produced in collaboration with livestock farmers to ensure availability of all required inputs. NGAUGE is an improvement on existing nitrogen fertiliser recommendation systems in that it relates production to environmental impact and is therefore potentially valuable to policy makers and researchers for identifying pollution mitigation strategies and blueprints for novel, more sustainable systems of livestock production. One possible application is the simulation of the phenomenon of pollution swapping, whereby, for example, the adoption of strategies for the reduction of nitrate leaching may exacerbate emissions of ammonia and nitrous oxide. Outputs of the decision support system include a field- and target-specific N fertiliser recommendation together with farm- and field-based N budgets, comprising amounts of N in both production and loss components of the system. Recommendations may be updated on a monthly basis to take account of deviations of weather conditions from the 30-year mean. The optimisation procedure within NGAUGE enables user-specified targets of herbage production, N loss or fertiliser use to be achieved while maximising efficiency of N use. Examples of model output for a typical grassland management scenario demonstrate the effect on model predictions of site and management properties such as soil texture, weather zone, grazing and manure applications. Depending on existing management and site characteristics, simulations with NGAUGE suggest that it is possible to reduce nitrate leaching by up to 46% (compared with a fertiliser distribution from existing fertiliser recommendations), and fertiliser by
ISSN:0167-8809
1873-2305
DOI:10.1016/j.agee.2005.02.021