Loading…
Microtiter plate, optode respirometry, and inter-individual variance in metabolic rates among nauplii of Artemia sp
Understanding the potential metabolic lifespan of a cohort of marine invertebrate embryos or larvae requires not just precise measurements of respiration rates, but also requires a large number of individual-level measurements to accurately describe the distribution of metabolic rate potentials with...
Saved in:
Published in: | Marine ecology. Progress series (Halstenbek) 2005-01, Vol.296, p.281-289 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Understanding the potential metabolic lifespan of a cohort of marine invertebrate embryos or larvae requires not just precise measurements of respiration rates, but also requires a large number of individual-level measurements to accurately describe the distribution of metabolic rate potentials within that cohort. To this end, we have developed a simple protocol for converting a 384-well microtiter plate into a 384-chamber, microrespirometer, optode using a plate-reading fluorometer for continuous, real-time data acquisition. We have ground-truthed this high-throughput technique using Artemia sp. nauplii at similar to 48 h post-hydration. In this paper we present >1000 separate respiration rate measurements on nauplii, providing a novel look at the distribution of metabolic rates within a cohort of larvae. At this high level of individual sampling, we have applied a Shannon-Weaver information entropy statistic to describe the complexity of these rate distributions and to show that the range of metabolic phenotypes expressed in a group of nauplii is responsive to the salinity in which they are rehydrated. Understanding the nature and mechanisms by which variations in metabolic rate intensities can be so large within a cohort and can be responsive to environmental parameters represents a real challenge in larval biology, which will require high-throughput methodologies at both molecular and biochemical levels to decipher. |
---|---|
ISSN: | 0171-8630 1616-1599 |
DOI: | 10.3354/meps296281 |