Loading…

HelixFlex : bioinspired maneuverable instrument for skull base surgery

Endoscopic endonasal surgery is currently regarded as the 'gold standard' for operating on pituitary gland tumors, and is becoming more and more accepted for treatment of other skull base lesions. However, endoscopic surgical treatment of most skull base pathologies, including certain pitu...

Full description

Saved in:
Bibliographic Details
Published in:Bioinspiration & biomimetics 2015-12, Vol.10 (6), p.066013-066013
Main Authors: Gerboni, Giada, Henselmans, Paul W J, Arkenbout, Ewout A, Furth, Wouter R van, Breedveld, Paul
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Endoscopic endonasal surgery is currently regarded as the 'gold standard' for operating on pituitary gland tumors, and is becoming more and more accepted for treatment of other skull base lesions. However, endoscopic surgical treatment of most skull base pathologies, including certain pituitary tumors, is severely impaired by current instruments lack of maneuverability. Especially, gaining access to, and visibility of, difficult-to-reach anatomical corners without interference with surrounding neurovascular structures or other instruments, is a challenge. In this context there is the need for instruments that are able to provide a stable shaft position, while both the orientation and the position of the end-effector can be independently controlled. Current instruments that allow for this level of maneuverability are usually mechanically complex, and hence less suitable for mass production. This study therefore focuses on the development of a new actuation technique that allows for the required maneuverability while reducing the construction complexity. This actuation technique, referred to as multi-actuation, integrates multiple cable routings into a single steerable structure. Multi-actuation has been successfully integrated and tested in a handheld prototype instrument called HelixFlex. HelixFlex contains a 4 degrees of freedom maneuverable 5.8 mm (diameter) tip and shows promising results concerning its maneuverability and potential rigidity.
ISSN:1748-3190
1748-3182
1748-3190
DOI:10.1088/1748-3190/10/6/066013