Loading…

THE NATIONAL BASIN DELINEATION PROJECT

The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and Prediction (FFMP) system. FFMP-averaged basin rainfall calcul...

Full description

Saved in:
Bibliographic Details
Published in:Bulletin of the American Meteorological Society 2005-10, Vol.86 (10), p.1443-1452
Main Authors: Arthur, Ami T., Cox, Gina M., Kuhnert, Nathan R., Slayter, David L., Howard, Kenneth W.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The National Basin Delineation Project (NBDP) was undertaken by the National Severe Storms Laboratory to define flash-flood-scale basin boundaries for the country in support of the National Weather Service (NWS) Flash Flood Monitoring and Prediction (FFMP) system. FFMP-averaged basin rainfall calculations allow NWS forecasters to monitor precipitation in flash-flood-scale basins, improving their ability to make accurate and timely flash-flood-warning decisions. The NBDP was accomplished through a partnership with the U.S. Geological Survey Earth Resources Observation Systems (EROS) Data Center (EDC). The one-arc-second (approximately 30 m)-resolution digital terrain data in the EDC's National Elevation Dataset provided the basis for derivation of the following digital maps using a geographic information system: 1) a grid of hydrologically conditioned elevation values (all grid cells have a definned flow direction), 2) a grid of flow direction indicating which of eight directions water will travel based on slope, 3) a grid of flow accumulation containing a count of the number of upstream grid cells contributing flow to each grid cell, 4) synthetic streamlines derived from the flow accumulation grid, and 5) flash-flood-scale basin boundaries. Special techniques were applied in coastal areas and closed basins (basins with no outflow) to ensure the accuracy of derived basins and streams. Codifying each basin with a unique identifier and including hydrologic connectivity information produced a versatile, seamless dataset for use in FFMP and other national applications.
ISSN:0003-0007
1520-0477
DOI:10.1175/BAMS-86-10-1443