Loading…

Molecular cloning and characterization of a novel soybean gene encoding a leucine-zipper-like protein induced to salt stress

To understand molecular responses to salt stress in soybean ( Glycine max [L.] Merr.), we identified 106 salt-inducible soybean genes that expressed differentially at 72 h after 100 mM NaCl treatment using the cDNA-amplified fragment length polymorphism (AFLP) method. The genes were designated as G....

Full description

Saved in:
Bibliographic Details
Published in:Gene 2005-08, Vol.356, p.135-145
Main Authors: Aoki, Ayako, Kanegami, Akemi, Mihara, Michiko, Kojima, Toshio, Shiraiwa, Masakazu, Takahara, Hidenari
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To understand molecular responses to salt stress in soybean ( Glycine max [L.] Merr.), we identified 106 salt-inducible soybean genes that expressed differentially at 72 h after 100 mM NaCl treatment using the cDNA-amplified fragment length polymorphism (AFLP) method. The genes were designated as G. max Transcript-Derived Fragments ( GmTDFs). Among these genes, we characterized a soybean gene GmTDF-5 that encoded an unknown protein of 367 amino acids. The GmTDF-5 protein was a putative cytosolic protein with two leucine-zipper motifs at the N-terminal and was calculated as 40.7 kDa. Southern blot analysis indicated that GmTDF-5 presents as an intron-less single gene on soybean genome and possibly distributes narrowly throughout the higher plants. By 100 mM NaCl treatment, the gene expression of GmTDF-5 was induced in the stem and lower-expanded leaf, and the amount of mRNA increased 5.1- and 2.0-fold up to 72 h, respectively. Interestingly, GmTDF-5 expression in the upper-leaf appeared dramatically with 10.0-fold increase at 72 h after the salt stress, but not until 48 h. Hyperosmotic pressure (mannitol treatment) and dehydration also caused the increases similar to NaCl treatment in the levels of GmTDF-5 expression. These results suggest that GmTDF-5 might be a novel cytosolic leucine-zipper-like protein functioning in mature organs of soybean shoot against water-potential changes.
ISSN:0378-1119
1879-0038
DOI:10.1016/j.gene.2005.04.014