Loading…

GSK-3β Directly Phosphorylates and Activates MARK2/PAR-1

In Alzheimer disease (AD), the microtubule-associated protein tau is found hyperphosphorylated in paired helical filaments. Among many phosphorylated sites in tau, Ser-262 is the major site for abnormal phosphorylation of tau in AD brain. The kinase known to phosphorylate this particular site is MAR...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 2005-12, Vol.280 (52), p.42715-42722
Main Authors: Kosuga, Shinichi, Tashiro, Etsu, Kajioka, Toshifumi, Ueki, Mayumi, Shimizu, Yoshifumi, Imoto, Masaya
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In Alzheimer disease (AD), the microtubule-associated protein tau is found hyperphosphorylated in paired helical filaments. Among many phosphorylated sites in tau, Ser-262 is the major site for abnormal phosphorylation of tau in AD brain. The kinase known to phosphorylate this particular site is MARK2, whose activation mechanism is yet to be studied. Our first finding that treatment of cells with LiCl, a selective inhibitor of another major tau kinase, glycogen synthase kinase-3β (GSK-3β), inhibits phosphorylation of Ser-262 of tau led us to investigate the possible involvement of GSK-3β in MARK2 activation. In vitro kinase reaction revealed that recombinant GSK-3β indeed phosphorylates MARK2, whereas it failed to phosphorylate Ser-262 of tau. Our further findings led us to conclude that GSK-3β phosphorylates MARK2 on Ser-212, one of the two reported phosphorylation sites (Thr-208 and Ser-212) found in the activation loop of MARK2. Down-regulation of either GSK-3β or MARK2 by small interfering RNAs suppressed the level of phosphorylation on Ser-262. These results, respectively, indicated that GSK-3β is responsible for phosphorylating Ser-262 of tau through phosphorylation and activation of MARK2 and that the phosphorylation of tau at this particular site is predominantly mediated by a GSK-3β-MARK2 pathway. These findings are of interest in the context of the pathogenesis of AD.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M507941200