Loading…
The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines
A mechanistic study is presented of the oxidative dehydrogenation of the iron( iii ) complex [Fe III L 3 ] 3+ , 1 , (L 3 = 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectros...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2015-03, Vol.44 (12), p.551-5519 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c404t-eeb9144dc63d8ae5b70f96cc55fa4d1cf3d252f8ec0aae1338555017450bd8303 |
---|---|
cites | cdi_FETCH-LOGICAL-c404t-eeb9144dc63d8ae5b70f96cc55fa4d1cf3d252f8ec0aae1338555017450bd8303 |
container_end_page | 5519 |
container_issue | 12 |
container_start_page | 551 |
container_title | Dalton transactions : an international journal of inorganic chemistry |
container_volume | 44 |
creator | Saucedo-Vázquez, Juan Pablo Kroneck, Peter M. H Sosa-Torres, Martha Elena |
description | A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectroscopy and X-ray crystallography as the identical monoimine complex [Fe
II
L
4
]
2+
,
2
, (L
4
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanon-1-ene) also formed under an inert nitrogen atmosphere. Molecular oxygen is an active player in the oxidative dehydrogenation of iron(
iii
) complex
1
. Reduced oxygen species,
e.g.
, superoxide, (O
2
&z.rad;
−
) and peroxide (O
2
2−
), are formed and undergo single electron transfer reactions with ligand-based radical intermediates. The experimental rate law can be described by the third order rate equation, −d[(Fe
III
L
3
)
3+
]/dt =
k
OD
[(Fe
III
L
3
)
3+
][EtO
−
][O
2
], with
k
OD
= 3.80 ± 0.09 × 10
7
M
−2
s
−1
(60 °C,
μ
= 0.01 M). The reduction O
2
→ O
2
&z.rad;
−
represents the rate determining step, with superoxide becoming further reduced to peroxide as shown by a coupled heme catalase assay. In an independent study, with H
2
O
2
, replacing O
2
as the oxidant, the experimental rate law depended on [H
2
O
2
]: −d[(Fe
III
L
3
)
3+
]/dt =
k
H
2
O
2
[(Fe
III
L
3
)
3+
][H
2
O
2
]), with
k
H
2
O
2
= 6.25 ± 0.02 × 10
−3
M
−1
s
−1
. In contrast to the reaction performed under N
2
, no kinetic isotope effect (KIE) or general base catalysis was found for the reaction of iron(
iii
) complex
1
with O
2
. Under N
2
, two consecutive one-electron oxidation steps of the ligand coupled to proton removal produced the iron(
ii
)-monoimine complex [Fe
II
L
4
]
2+
and the iron(
ii
)-amine complex [Fe
II
L
3
]
2+
in a 1 : 1 ratio (disproportionation), with the amine deprotonation being the rate determining step. Notably, the reaction is almost one order of magnitude faster in the presence of O
2
, with
k
EtO
−
= 3.02 ± 0.09 × 10
5
M
−1
s
−1
(O
2
) compared to
k
EtO
−
= 4.92 ± 0.01 × 10
4
M
−1
s
−1
(N
2
), documenting the role of molecular oxygen in the dehydrogenation reaction.
A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. |
doi_str_mv | 10.1039/c4dt03606a |
format | article |
fullrecord | <record><control><sourceid>proquest_rsc_p</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744675338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1662640269</sourcerecordid><originalsourceid>FETCH-LOGICAL-c404t-eeb9144dc63d8ae5b70f96cc55fa4d1cf3d252f8ec0aae1338555017450bd8303</originalsourceid><addsrcrecordid>eNqF0T1PwzAQBmALgSgUFnZQ2ApSwPFXkrEqn1IllrKwRI59oUZJXOwE0X-PS0vZYDpb9_jV6YzQSYKvEkzza8V0h6nAQu6gg4SlaZwTyna3ZyIG6ND7N4wJwZzsowHhIk_zND1AL7M5RM7WENkqakJVfS1dZD-Xr9BGpo260DfOtiNjzEW8cLaxHegAjJad-YBIw3ypnQ083G27ypGNacEfob1K1h6ON3WInu9uZ5OHePp0_zgZT2PFMOtigDJPGNNKUJ1J4GWKq1woxXklmU5URTXhpMpAYSkhoTTjnOMkZRyXOqOYDtFonRuGe-_Bd0VjvIK6li3Y3heBMpHy8PB_KgQRDBORB3q5pspZ7x1UxcKZRrplkeBitfZiwm5m32sfB3y2ye3LBvSW_uw5gPM1cF5tu7__Vix0FczpX4Z-Ad_NksM</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1662640269</pqid></control><display><type>article</type><title>The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines</title><source>Royal Society of Chemistry</source><creator>Saucedo-Vázquez, Juan Pablo ; Kroneck, Peter M. H ; Sosa-Torres, Martha Elena</creator><creatorcontrib>Saucedo-Vázquez, Juan Pablo ; Kroneck, Peter M. H ; Sosa-Torres, Martha Elena</creatorcontrib><description>A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectroscopy and X-ray crystallography as the identical monoimine complex [Fe
II
L
4
]
2+
,
2
, (L
4
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanon-1-ene) also formed under an inert nitrogen atmosphere. Molecular oxygen is an active player in the oxidative dehydrogenation of iron(
iii
) complex
1
. Reduced oxygen species,
e.g.
, superoxide, (O
2
&z.rad;
−
) and peroxide (O
2
2−
), are formed and undergo single electron transfer reactions with ligand-based radical intermediates. The experimental rate law can be described by the third order rate equation, −d[(Fe
III
L
3
)
3+
]/dt =
k
OD
[(Fe
III
L
3
)
3+
][EtO
−
][O
2
], with
k
OD
= 3.80 ± 0.09 × 10
7
M
−2
s
−1
(60 °C,
μ
= 0.01 M). The reduction O
2
→ O
2
&z.rad;
−
represents the rate determining step, with superoxide becoming further reduced to peroxide as shown by a coupled heme catalase assay. In an independent study, with H
2
O
2
, replacing O
2
as the oxidant, the experimental rate law depended on [H
2
O
2
]: −d[(Fe
III
L
3
)
3+
]/dt =
k
H
2
O
2
[(Fe
III
L
3
)
3+
][H
2
O
2
]), with
k
H
2
O
2
= 6.25 ± 0.02 × 10
−3
M
−1
s
−1
. In contrast to the reaction performed under N
2
, no kinetic isotope effect (KIE) or general base catalysis was found for the reaction of iron(
iii
) complex
1
with O
2
. Under N
2
, two consecutive one-electron oxidation steps of the ligand coupled to proton removal produced the iron(
ii
)-monoimine complex [Fe
II
L
4
]
2+
and the iron(
ii
)-amine complex [Fe
II
L
3
]
2+
in a 1 : 1 ratio (disproportionation), with the amine deprotonation being the rate determining step. Notably, the reaction is almost one order of magnitude faster in the presence of O
2
, with
k
EtO
−
= 3.02 ± 0.09 × 10
5
M
−1
s
−1
(O
2
) compared to
k
EtO
−
= 4.92 ± 0.01 × 10
4
M
−1
s
−1
(N
2
), documenting the role of molecular oxygen in the dehydrogenation reaction.
A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen.</description><identifier>ISSN: 1477-9226</identifier><identifier>EISSN: 1477-9234</identifier><identifier>DOI: 10.1039/c4dt03606a</identifier><identifier>PMID: 25697977</identifier><language>eng</language><publisher>England</publisher><subject>Amines ; Amines - chemistry ; Catalase ; Dehydrogenation ; Ethyl alcohol ; Ferric Compounds - chemistry ; Hydrogenation ; Isotope effect ; Joining ; Mathematical analysis ; Oxidation-Reduction ; Oxygen - chemistry ; Peroxides ; Pyridines - chemistry</subject><ispartof>Dalton transactions : an international journal of inorganic chemistry, 2015-03, Vol.44 (12), p.551-5519</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c404t-eeb9144dc63d8ae5b70f96cc55fa4d1cf3d252f8ec0aae1338555017450bd8303</citedby><cites>FETCH-LOGICAL-c404t-eeb9144dc63d8ae5b70f96cc55fa4d1cf3d252f8ec0aae1338555017450bd8303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27922,27923</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25697977$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Saucedo-Vázquez, Juan Pablo</creatorcontrib><creatorcontrib>Kroneck, Peter M. H</creatorcontrib><creatorcontrib>Sosa-Torres, Martha Elena</creatorcontrib><title>The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines</title><title>Dalton transactions : an international journal of inorganic chemistry</title><addtitle>Dalton Trans</addtitle><description>A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectroscopy and X-ray crystallography as the identical monoimine complex [Fe
II
L
4
]
2+
,
2
, (L
4
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanon-1-ene) also formed under an inert nitrogen atmosphere. Molecular oxygen is an active player in the oxidative dehydrogenation of iron(
iii
) complex
1
. Reduced oxygen species,
e.g.
, superoxide, (O
2
&z.rad;
−
) and peroxide (O
2
2−
), are formed and undergo single electron transfer reactions with ligand-based radical intermediates. The experimental rate law can be described by the third order rate equation, −d[(Fe
III
L
3
)
3+
]/dt =
k
OD
[(Fe
III
L
3
)
3+
][EtO
−
][O
2
], with
k
OD
= 3.80 ± 0.09 × 10
7
M
−2
s
−1
(60 °C,
μ
= 0.01 M). The reduction O
2
→ O
2
&z.rad;
−
represents the rate determining step, with superoxide becoming further reduced to peroxide as shown by a coupled heme catalase assay. In an independent study, with H
2
O
2
, replacing O
2
as the oxidant, the experimental rate law depended on [H
2
O
2
]: −d[(Fe
III
L
3
)
3+
]/dt =
k
H
2
O
2
[(Fe
III
L
3
)
3+
][H
2
O
2
]), with
k
H
2
O
2
= 6.25 ± 0.02 × 10
−3
M
−1
s
−1
. In contrast to the reaction performed under N
2
, no kinetic isotope effect (KIE) or general base catalysis was found for the reaction of iron(
iii
) complex
1
with O
2
. Under N
2
, two consecutive one-electron oxidation steps of the ligand coupled to proton removal produced the iron(
ii
)-monoimine complex [Fe
II
L
4
]
2+
and the iron(
ii
)-amine complex [Fe
II
L
3
]
2+
in a 1 : 1 ratio (disproportionation), with the amine deprotonation being the rate determining step. Notably, the reaction is almost one order of magnitude faster in the presence of O
2
, with
k
EtO
−
= 3.02 ± 0.09 × 10
5
M
−1
s
−1
(O
2
) compared to
k
EtO
−
= 4.92 ± 0.01 × 10
4
M
−1
s
−1
(N
2
), documenting the role of molecular oxygen in the dehydrogenation reaction.
A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen.</description><subject>Amines</subject><subject>Amines - chemistry</subject><subject>Catalase</subject><subject>Dehydrogenation</subject><subject>Ethyl alcohol</subject><subject>Ferric Compounds - chemistry</subject><subject>Hydrogenation</subject><subject>Isotope effect</subject><subject>Joining</subject><subject>Mathematical analysis</subject><subject>Oxidation-Reduction</subject><subject>Oxygen - chemistry</subject><subject>Peroxides</subject><subject>Pyridines - chemistry</subject><issn>1477-9226</issn><issn>1477-9234</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqF0T1PwzAQBmALgSgUFnZQ2ApSwPFXkrEqn1IllrKwRI59oUZJXOwE0X-PS0vZYDpb9_jV6YzQSYKvEkzza8V0h6nAQu6gg4SlaZwTyna3ZyIG6ND7N4wJwZzsowHhIk_zND1AL7M5RM7WENkqakJVfS1dZD-Xr9BGpo260DfOtiNjzEW8cLaxHegAjJad-YBIw3ypnQ083G27ypGNacEfob1K1h6ON3WInu9uZ5OHePp0_zgZT2PFMOtigDJPGNNKUJ1J4GWKq1woxXklmU5URTXhpMpAYSkhoTTjnOMkZRyXOqOYDtFonRuGe-_Bd0VjvIK6li3Y3heBMpHy8PB_KgQRDBORB3q5pspZ7x1UxcKZRrplkeBitfZiwm5m32sfB3y2ye3LBvSW_uw5gPM1cF5tu7__Vix0FczpX4Z-Ad_NksM</recordid><startdate>20150328</startdate><enddate>20150328</enddate><creator>Saucedo-Vázquez, Juan Pablo</creator><creator>Kroneck, Peter M. H</creator><creator>Sosa-Torres, Martha Elena</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150328</creationdate><title>The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines</title><author>Saucedo-Vázquez, Juan Pablo ; Kroneck, Peter M. H ; Sosa-Torres, Martha Elena</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c404t-eeb9144dc63d8ae5b70f96cc55fa4d1cf3d252f8ec0aae1338555017450bd8303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amines</topic><topic>Amines - chemistry</topic><topic>Catalase</topic><topic>Dehydrogenation</topic><topic>Ethyl alcohol</topic><topic>Ferric Compounds - chemistry</topic><topic>Hydrogenation</topic><topic>Isotope effect</topic><topic>Joining</topic><topic>Mathematical analysis</topic><topic>Oxidation-Reduction</topic><topic>Oxygen - chemistry</topic><topic>Peroxides</topic><topic>Pyridines - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Saucedo-Vázquez, Juan Pablo</creatorcontrib><creatorcontrib>Kroneck, Peter M. H</creatorcontrib><creatorcontrib>Sosa-Torres, Martha Elena</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Saucedo-Vázquez, Juan Pablo</au><au>Kroneck, Peter M. H</au><au>Sosa-Torres, Martha Elena</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines</atitle><jtitle>Dalton transactions : an international journal of inorganic chemistry</jtitle><addtitle>Dalton Trans</addtitle><date>2015-03-28</date><risdate>2015</risdate><volume>44</volume><issue>12</issue><spage>551</spage><epage>5519</epage><pages>551-5519</pages><issn>1477-9226</issn><eissn>1477-9234</eissn><abstract>A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen. The product of the reaction was identified by NMR spectroscopy and X-ray crystallography as the identical monoimine complex [Fe
II
L
4
]
2+
,
2
, (L
4
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanon-1-ene) also formed under an inert nitrogen atmosphere. Molecular oxygen is an active player in the oxidative dehydrogenation of iron(
iii
) complex
1
. Reduced oxygen species,
e.g.
, superoxide, (O
2
&z.rad;
−
) and peroxide (O
2
2−
), are formed and undergo single electron transfer reactions with ligand-based radical intermediates. The experimental rate law can be described by the third order rate equation, −d[(Fe
III
L
3
)
3+
]/dt =
k
OD
[(Fe
III
L
3
)
3+
][EtO
−
][O
2
], with
k
OD
= 3.80 ± 0.09 × 10
7
M
−2
s
−1
(60 °C,
μ
= 0.01 M). The reduction O
2
→ O
2
&z.rad;
−
represents the rate determining step, with superoxide becoming further reduced to peroxide as shown by a coupled heme catalase assay. In an independent study, with H
2
O
2
, replacing O
2
as the oxidant, the experimental rate law depended on [H
2
O
2
]: −d[(Fe
III
L
3
)
3+
]/dt =
k
H
2
O
2
[(Fe
III
L
3
)
3+
][H
2
O
2
]), with
k
H
2
O
2
= 6.25 ± 0.02 × 10
−3
M
−1
s
−1
. In contrast to the reaction performed under N
2
, no kinetic isotope effect (KIE) or general base catalysis was found for the reaction of iron(
iii
) complex
1
with O
2
. Under N
2
, two consecutive one-electron oxidation steps of the ligand coupled to proton removal produced the iron(
ii
)-monoimine complex [Fe
II
L
4
]
2+
and the iron(
ii
)-amine complex [Fe
II
L
3
]
2+
in a 1 : 1 ratio (disproportionation), with the amine deprotonation being the rate determining step. Notably, the reaction is almost one order of magnitude faster in the presence of O
2
, with
k
EtO
−
= 3.02 ± 0.09 × 10
5
M
−1
s
−1
(O
2
) compared to
k
EtO
−
= 4.92 ± 0.01 × 10
4
M
−1
s
−1
(N
2
), documenting the role of molecular oxygen in the dehydrogenation reaction.
A mechanistic study is presented of the oxidative dehydrogenation of the iron(
iii
) complex [Fe
III
L
3
]
3+
,
1
, (L
3
= 1,9-bis(2′-pyridyl)-5-[(ethoxy-2′′-pyridyl)methyl]-2,5,8-triazanonane) in ethanol in the presence of molecular oxygen.</abstract><cop>England</cop><pmid>25697977</pmid><doi>10.1039/c4dt03606a</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1477-9226 |
ispartof | Dalton transactions : an international journal of inorganic chemistry, 2015-03, Vol.44 (12), p.551-5519 |
issn | 1477-9226 1477-9234 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744675338 |
source | Royal Society of Chemistry |
subjects | Amines Amines - chemistry Catalase Dehydrogenation Ethyl alcohol Ferric Compounds - chemistry Hydrogenation Isotope effect Joining Mathematical analysis Oxidation-Reduction Oxygen - chemistry Peroxides Pyridines - chemistry |
title | The role of molecular oxygen in the iron(iii)-promoted oxidative dehydrogenation of amines |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A58%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_rsc_p&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20role%20of%20molecular%20oxygen%20in%20the%20iron(iii)-promoted%20oxidative%20dehydrogenation%20of%20amines&rft.jtitle=Dalton%20transactions%20:%20an%20international%20journal%20of%20inorganic%20chemistry&rft.au=Saucedo-V%C3%A1zquez,%20Juan%20Pablo&rft.date=2015-03-28&rft.volume=44&rft.issue=12&rft.spage=551&rft.epage=5519&rft.pages=551-5519&rft.issn=1477-9226&rft.eissn=1477-9234&rft_id=info:doi/10.1039/c4dt03606a&rft_dat=%3Cproquest_rsc_p%3E1662640269%3C/proquest_rsc_p%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c404t-eeb9144dc63d8ae5b70f96cc55fa4d1cf3d252f8ec0aae1338555017450bd8303%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1662640269&rft_id=info:pmid/25697977&rfr_iscdi=true |