Loading…
Homo- and heteroleptic alkoxycarbene f-element complexes and their reactivity towards acidic N-H and C-H bonds
The reactivity of a series of organometallic rare earth and actinide complexes with hemilabile NHC-ligands towards substrates with acidic C-H and N-H bonds is described. The synthesis, characterisation and X-ray structures of the new heteroleptic mono- and bis(NHC) cyclopentadienyl complexes LnCp2(L...
Saved in:
Published in: | Dalton transactions : an international journal of inorganic chemistry 2014-10, Vol.43 (38), p.14346-14358 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The reactivity of a series of organometallic rare earth and actinide complexes with hemilabile NHC-ligands towards substrates with acidic C-H and N-H bonds is described. The synthesis, characterisation and X-ray structures of the new heteroleptic mono- and bis(NHC) cyclopentadienyl complexes LnCp2(L) 1 (Ln = Sc, Y, Ce; L = alkoxy-tethered carbene [OCMe2CH2(1-C{NCHCHN(i)Pr})]), LnCp(L)2 (Ln = Y) , and the homoleptic tetrakis(NHC) complex Th(L)4 4 are described. The reactivity of these complexes, and of the homoleptic complexes Ln(L)3 (Ln = Sc 3, Ce), with E-H substrates is described, where EH = pyrrole C4H4NH, indole C8H6NH, diphenylacetone Ph2CC(O)Me, terminal alkynes RC≡CH (R = Me3Si, Ph), and cyclopentadiene C5H6. Complex 1-Y heterolytically cleaves and adds pyrrole and indole N-H across the metal carbene bond, whereas 1-Ce does not, although 3 and 4 form H-bonded adducts. Complexes 1-Y and 1-Sc form adducts with CpH without cleaving the acidic C-H bond, 1-Ce cleaves the Cp-H bond, but 2 reacts to form the very rare H(+)-[C5H5](-)-H(+) motif. Complex 1-Ce cleaves alkyne C-H bonds but the products rearrange upon formation, while complex 1-Y cleaves the C-H bond in diphenylacetone forming a product which rearranges to the Y-O bonded enolate product. |
---|---|
ISSN: | 1477-9226 1477-9234 |
DOI: | 10.1039/c4dt01442a |