Loading…

Magnetic superexchange interactions: trinuclear bis(oxamidato) versus bis(oxamato) type complexes

The diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2) was treated with an excess of RNH2 in MeOH to cause the exclusive formation of the respective o-phenylenebis(N(R)-oxamides) (opboH4R2, R = Me , Et , (n)Pr ) in good yields. Treatment of with half an equivalent of [Cu2(AcO)4(H2O)2] or one e...

Full description

Saved in:
Bibliographic Details
Published in:Dalton transactions : an international journal of inorganic chemistry 2015-05, Vol.44 (17), p.8062-8079
Main Authors: Abdulmalic, Mohammad A, Aliabadi, Azar, Petr, Andreas, Krupskaya, Yulia, Kataev, Vladislav, Büchner, Bernd, Zaripov, Ruslan, Vavilova, Evgeniya, Voronkova, Violeta, Salikov, Kev, Hahn, Torsten, Kortus, Jens, Eya'ane Meva, Francois, Schaarschmidt, Dieter, Rüffer, Tobias
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The diethyl ester of o-phenylenebis(oxamic acid) (opbaH2Et2) was treated with an excess of RNH2 in MeOH to cause the exclusive formation of the respective o-phenylenebis(N(R)-oxamides) (opboH4R2, R = Me , Et , (n)Pr ) in good yields. Treatment of with half an equivalent of [Cu2(AcO)4(H2O)2] or one equivalent of [Ni(AcO)2(H2O)4] followed by the addition of four equivalents of [(n)Bu4N]OH resulted in the formation of mononuclear bis(oxamidato) type complexes [(n)Bu4N]2[M(opboR2)] (M = Ni, R = Me , Et , (n)Pr ; M = Cu, R = Me , Et , (n)Pr ). By addition of two equivalents of [Cu(pmdta)(NO3)2] to MeCN solutions of , novel trinuclear complexes [Cu3(opboR2)(L)2](NO3)2 (L = pmdta, R = Me , Et , (n)Pr ) could be obtained. Compounds have been characterized by elemental analysis and NMR/IR spectroscopy. Furthermore, the solid state structures of and have been determined by single-crystal X-ray diffraction studies. By controlled cocrystallization, diamagnetically diluted and (1%) in the host lattice of and (99%) (@ and @), respectively, in the form of single crystals have been made available, allowing single crystal ESR studies to extract all components of the g-factor and the tensors of onsite (Cu)A and transferred (N)A hyperfine (HF) interaction. From these studies, the spin density distribution of the [Cu(opboEt2)](2-) and [Cu(opbo(n)Pr2)](2-) complex fragments of and , respectively, could be determined. Additionally, as a single crystal ENDOR measurement of @ revealed the individual HF tensors of the N donor atoms to be unequal, individual estimates of the spin densities on each N donor atom were made. The magnetic properties of were studied by susceptibility measurements versus temperature to give J values varying from -96 cm(-1) () over -104 cm(-1) () to -132 cm(-1) (). These three trinuclear Cu(II)-containing bis(oxamidato) type complexes exhibit J values which are comparable to and slightly larger in magnitude than those of related bis(oxamato) type complexes. In a summarizing discussion involving experimentally obtained ESR results (spin density distribution) of and , the geometries of the terminal [Cu(pmdta)](2+) fragments of determined by crystallographic studies, together with accompanying quantum chemical calculations, an approach is derived to explain these phenomena and to conclude if the spin density distribution of mononuclear bis(oxamato)/bis(oxamidato) type complexes could be a measure of the J couplings of corresponding trinuclear complexes.
ISSN:1477-9226
1477-9234
DOI:10.1039/c4dt03579h