Loading…
A geotechnical model of the Umka landslide with reference to landslides in weathered Neogene marls in Serbia
This paper describes a characteristic landslide model for landslides typically hosted in Neogene formations in Serbia, especially along the right banks of the Sava and Danube Rivers. It is focussed on the particular landslide Umka near Belgrade, which is a paradigm for numerous landslides in that ar...
Saved in:
Published in: | Landslides 2015-08, Vol.12 (4), p.689-702 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper describes a characteristic landslide model for landslides typically hosted in Neogene formations in Serbia, especially along the right banks of the Sava and Danube Rivers. It is focussed on the particular landslide Umka near Belgrade, which is a paradigm for numerous landslides in that area. Various field investigations and laboratory tests carried out in several campaigns, including 1979, 1991–1993 and 2005, underpinned the conception of a general model for this typological landslide. Additionally, a new landslide monitoring campaign started in 2010 provided supplementary data support for the model development. Landslide characteristics, sliding mechanism and material properties based on all these data are first summarised and discussed and then featured in a general model. It is assumed that the landslide is hosted in the weathered zone of grey marls and that the main sliding surface typically propagates along the contact between the fresh and weathered marls. Furthermore, the triggering is principally associated with lateral river erosion in the landslide toe, although heavy precipitation and snow melting have been witnessed to be important indirect triggers. Their correlation to the recorded displacements was difficult to determine due to complex hydrogeological relations and an isolated groundwater system, which is another common characteristic of this landslide type. Back analysis on the basis of the adopted model and the determined geotechnical parameters has been performed. The latter analysis is of particular interest because the Umka landslide is currently under consideration for a mitigation and stabilisation plan related to the construction of a new motorway route. |
---|---|
ISSN: | 1612-510X 1612-5118 |
DOI: | 10.1007/s10346-014-0499-4 |