Loading…

Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation

SUMMARY Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this larg...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical and analytical methods in geomechanics 2013-12, Vol.37 (17), p.2972-2986
Main Authors: Tran, H.H.T., Toh, K.C., Phoon, K.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4501-1d35b455602c02747ee8835bd4030abd9c758d87a0cad4b6aec48081e248193b3
cites cdi_FETCH-LOGICAL-a4501-1d35b455602c02747ee8835bd4030abd9c758d87a0cad4b6aec48081e248193b3
container_end_page 2986
container_issue 17
container_start_page 2972
container_title International journal for numerical and analytical methods in geomechanics
container_volume 37
creator Tran, H.H.T.
Toh, K.C.
Phoon, K.K.
description SUMMARY Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this large‐scale non‐symmetric linear system is of practical importance. The standard Krylov solver for a non‐symmetric solver is Bi‐CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s = 6) is more efficient than Bi‐CGSTAB when the preconditioner is the incomplete factorization with zero fill‐in of global stiffness matrix Kep (ILU(0)‐Kep). Iteration time is reduced by 40% by using IDR(s = 6) with ILU(0)‐Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low‐rank matrix Δ, which is re‐formed at each Newton–Raphson iteration. Numerical studies show that IDR(s = 6) with this ILU(0)‐Ke preconditioner is more time effective than IDR(s = 6) with ILU(0)‐Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. Copyright © 2013 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nag.2171
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744707185</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1475552757</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4501-1d35b455602c02747ee8835bd4030abd9c758d87a0cad4b6aec48081e248193b3</originalsourceid><addsrcrecordid>eNqFkdFqFDEUQAdRcK2CnxAQoT5Mm8wkk8xjre22UKsUpbAv4W4mY1MzSZs723X-3gxdKgjiUyA5nOTmFMVbRg8YpdVhgB8HFZPsWbFgtG3KVon6ebGgdVOXLW3Yy-IV4i2lVOTTRTF9TdbE0LnRxWA7cv7pah8_EDfaBKN7sASjf7CJ9DGREEOJ0zDYMTlDvAsWEsEJRzsQQIzGwZgVWzfekNOTzwQC-AkdktgTvAHv4zZ7NqGD-bLXxYsePNo3u3Wv-H568u34rLz4sjw_ProogQvKStbVYs2FaGhlaCW5tFapvNVxWlNYd62RQnVKAjXQ8XUD1nBFFbMVV6yt1_Vesf_ovUvxfmNx1INDY72HYOMGNZOcSypZ_qf_olwKISopZEbf_YXexk3KA8-UEK3KDdo_QpMiYrK9vktugDRpRvWcS-dces6V0fc7IaAB3ycIxuETX8mWCd7Mbywfua3zdvqnT18eLXfeHe9yp19PPKSfupG1FPr6cqk_LlerdrW61lf1b01Osh4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1455982179</pqid></control><display><type>article</type><title>Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation</title><source>Wiley</source><creator>Tran, H.H.T. ; Toh, K.C. ; Phoon, K.K.</creator><creatorcontrib>Tran, H.H.T. ; Toh, K.C. ; Phoon, K.K.</creatorcontrib><description>SUMMARY Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this large‐scale non‐symmetric linear system is of practical importance. The standard Krylov solver for a non‐symmetric solver is Bi‐CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s = 6) is more efficient than Bi‐CGSTAB when the preconditioner is the incomplete factorization with zero fill‐in of global stiffness matrix Kep (ILU(0)‐Kep). Iteration time is reduced by 40% by using IDR(s = 6) with ILU(0)‐Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low‐rank matrix Δ, which is re‐formed at each Newton–Raphson iteration. Numerical studies show that IDR(s = 6) with this ILU(0)‐Ke preconditioner is more time effective than IDR(s = 6) with ILU(0)‐Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0363-9061</identifier><identifier>EISSN: 1096-9853</identifier><identifier>DOI: 10.1002/nag.2171</identifier><identifier>CODEN: IJNGDZ</identifier><language>eng</language><publisher>Chichester: Blackwell Publishing Ltd</publisher><subject>Applied sciences ; Buildings. Public works ; Computation methods. Tables. Charts ; Earthwork. Foundations. Retaining walls ; Exact sciences and technology ; Finite element method ; Geotechnics ; induced dimension reduction ; Iterative methods ; Linear systems ; Mathematical analysis ; Mathematical models ; non-associated ; non-symmetric linear system ; Nonlinearity ; plasticity ; preconditioning ; Solvers ; Stiffness matrix ; Structural analysis. Stresses</subject><ispartof>International journal for numerical and analytical methods in geomechanics, 2013-12, Vol.37 (17), p.2972-2986</ispartof><rights>Copyright © 2013 John Wiley &amp; Sons, Ltd.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4501-1d35b455602c02747ee8835bd4030abd9c758d87a0cad4b6aec48081e248193b3</citedby><cites>FETCH-LOGICAL-a4501-1d35b455602c02747ee8835bd4030abd9c758d87a0cad4b6aec48081e248193b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27915465$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, H.H.T.</creatorcontrib><creatorcontrib>Toh, K.C.</creatorcontrib><creatorcontrib>Phoon, K.K.</creatorcontrib><title>Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation</title><title>International journal for numerical and analytical methods in geomechanics</title><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><description>SUMMARY Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this large‐scale non‐symmetric linear system is of practical importance. The standard Krylov solver for a non‐symmetric solver is Bi‐CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s = 6) is more efficient than Bi‐CGSTAB when the preconditioner is the incomplete factorization with zero fill‐in of global stiffness matrix Kep (ILU(0)‐Kep). Iteration time is reduced by 40% by using IDR(s = 6) with ILU(0)‐Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low‐rank matrix Δ, which is re‐formed at each Newton–Raphson iteration. Numerical studies show that IDR(s = 6) with this ILU(0)‐Ke preconditioner is more time effective than IDR(s = 6) with ILU(0)‐Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. Copyright © 2013 John Wiley &amp; Sons, Ltd.</description><subject>Applied sciences</subject><subject>Buildings. Public works</subject><subject>Computation methods. Tables. Charts</subject><subject>Earthwork. Foundations. Retaining walls</subject><subject>Exact sciences and technology</subject><subject>Finite element method</subject><subject>Geotechnics</subject><subject>induced dimension reduction</subject><subject>Iterative methods</subject><subject>Linear systems</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>non-associated</subject><subject>non-symmetric linear system</subject><subject>Nonlinearity</subject><subject>plasticity</subject><subject>preconditioning</subject><subject>Solvers</subject><subject>Stiffness matrix</subject><subject>Structural analysis. Stresses</subject><issn>0363-9061</issn><issn>1096-9853</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkdFqFDEUQAdRcK2CnxAQoT5Mm8wkk8xjre22UKsUpbAv4W4mY1MzSZs723X-3gxdKgjiUyA5nOTmFMVbRg8YpdVhgB8HFZPsWbFgtG3KVon6ebGgdVOXLW3Yy-IV4i2lVOTTRTF9TdbE0LnRxWA7cv7pah8_EDfaBKN7sASjf7CJ9DGREEOJ0zDYMTlDvAsWEsEJRzsQQIzGwZgVWzfekNOTzwQC-AkdktgTvAHv4zZ7NqGD-bLXxYsePNo3u3Wv-H568u34rLz4sjw_ProogQvKStbVYs2FaGhlaCW5tFapvNVxWlNYd62RQnVKAjXQ8XUD1nBFFbMVV6yt1_Vesf_ovUvxfmNx1INDY72HYOMGNZOcSypZ_qf_olwKISopZEbf_YXexk3KA8-UEK3KDdo_QpMiYrK9vktugDRpRvWcS-dces6V0fc7IaAB3ycIxuETX8mWCd7Mbywfua3zdvqnT18eLXfeHe9yp19PPKSfupG1FPr6cqk_LlerdrW61lf1b01Osh4</recordid><startdate>20131210</startdate><enddate>20131210</enddate><creator>Tran, H.H.T.</creator><creator>Toh, K.C.</creator><creator>Phoon, K.K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>JQ2</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20131210</creationdate><title>Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation</title><author>Tran, H.H.T. ; Toh, K.C. ; Phoon, K.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4501-1d35b455602c02747ee8835bd4030abd9c758d87a0cad4b6aec48081e248193b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Buildings. Public works</topic><topic>Computation methods. Tables. Charts</topic><topic>Earthwork. Foundations. Retaining walls</topic><topic>Exact sciences and technology</topic><topic>Finite element method</topic><topic>Geotechnics</topic><topic>induced dimension reduction</topic><topic>Iterative methods</topic><topic>Linear systems</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>non-associated</topic><topic>non-symmetric linear system</topic><topic>Nonlinearity</topic><topic>plasticity</topic><topic>preconditioning</topic><topic>Solvers</topic><topic>Stiffness matrix</topic><topic>Structural analysis. Stresses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, H.H.T.</creatorcontrib><creatorcontrib>Toh, K.C.</creatorcontrib><creatorcontrib>Phoon, K.K.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, H.H.T.</au><au>Toh, K.C.</au><au>Phoon, K.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation</atitle><jtitle>International journal for numerical and analytical methods in geomechanics</jtitle><addtitle>Int. J. Numer. Anal. Meth. Geomech</addtitle><date>2013-12-10</date><risdate>2013</risdate><volume>37</volume><issue>17</issue><spage>2972</spage><epage>2986</epage><pages>2972-2986</pages><issn>0363-9061</issn><eissn>1096-9853</eissn><coden>IJNGDZ</coden><abstract>SUMMARY Non‐associated flow rule is essential when the popular Mohr–Coulomb model is used to model nonlinear behavior of soil. The global tangent stiffness matrix in nonlinear finite element analysis becomes non‐symmetric when this non‐associated flow rule is applied. Efficient solution of this large‐scale non‐symmetric linear system is of practical importance. The standard Krylov solver for a non‐symmetric solver is Bi‐CGSTAB. The Induced Dimension Reduction [IDR(s)] solver was proposed in the scientific computing literature relatively recently. Numerical studies of a drained strip footing problem on homogenous soil layer show that IDR(s = 6) is more efficient than Bi‐CGSTAB when the preconditioner is the incomplete factorization with zero fill‐in of global stiffness matrix Kep (ILU(0)‐Kep). Iteration time is reduced by 40% by using IDR(s = 6) with ILU(0)‐Kep. To further reduce computational cost, the global stiffness matrix Kep is divided into two parts. The first part is the linear elastic stiffness matrix Ke, which is formed only once at the beginning of solution step. The second part is a low‐rank matrix Δ, which is re‐formed at each Newton–Raphson iteration. Numerical studies show that IDR(s = 6) with this ILU(0)‐Ke preconditioner is more time effective than IDR(s = 6) with ILU(0)‐Kep when the percentage of yielded Gauss points in the mesh is less than 15%. The total computation time is reduced by 60% when all the recommended optimizing methods are used. Copyright © 2013 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nag.2171</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0363-9061
ispartof International journal for numerical and analytical methods in geomechanics, 2013-12, Vol.37 (17), p.2972-2986
issn 0363-9061
1096-9853
language eng
recordid cdi_proquest_miscellaneous_1744707185
source Wiley
subjects Applied sciences
Buildings. Public works
Computation methods. Tables. Charts
Earthwork. Foundations. Retaining walls
Exact sciences and technology
Finite element method
Geotechnics
induced dimension reduction
Iterative methods
Linear systems
Mathematical analysis
Mathematical models
non-associated
non-symmetric linear system
Nonlinearity
plasticity
preconditioning
Solvers
Stiffness matrix
Structural analysis. Stresses
title Preconditioned IDR(s) iterative solver for non-symmetric linear system associated with FEM analysis of shallow foundation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A00%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Preconditioned%20IDR(s)%20iterative%20solver%20for%20non-symmetric%20linear%20system%20associated%20with%20FEM%20analysis%20of%20shallow%20foundation&rft.jtitle=International%20journal%20for%20numerical%20and%20analytical%20methods%20in%20geomechanics&rft.au=Tran,%20H.H.T.&rft.date=2013-12-10&rft.volume=37&rft.issue=17&rft.spage=2972&rft.epage=2986&rft.pages=2972-2986&rft.issn=0363-9061&rft.eissn=1096-9853&rft.coden=IJNGDZ&rft_id=info:doi/10.1002/nag.2171&rft_dat=%3Cproquest_cross%3E1475552757%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4501-1d35b455602c02747ee8835bd4030abd9c758d87a0cad4b6aec48081e248193b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1455982179&rft_id=info:pmid/&rfr_iscdi=true