Loading…

Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid

A numerical investigation is performed into the natural convection heat transfer characteristics within an enclosed cavity filled with nanofluid. The left and right walls of the cavity have a complex-wavy geometry and are maintained at a low and high temperature, respectively. Meanwhile, the upper a...

Full description

Saved in:
Bibliographic Details
Published in:International communications in heat and mass transfer 2013-05, Vol.44, p.108-115
Main Authors: Mansour, M.A., Bakier, M.A.Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-f4be3212042ae2eaddecb4035d84ba21d26d275ae7835ade66762e5075a9cd023
cites cdi_FETCH-LOGICAL-c438t-f4be3212042ae2eaddecb4035d84ba21d26d275ae7835ade66762e5075a9cd023
container_end_page 115
container_issue
container_start_page 108
container_title International communications in heat and mass transfer
container_volume 44
creator Mansour, M.A.
Bakier, M.A.Y.
description A numerical investigation is performed into the natural convection heat transfer characteristics within an enclosed cavity filled with nanofluid. The left and right walls of the cavity have a complex-wavy geometry and are maintained at a low and high temperature, respectively. Meanwhile, the upper and lower walls of the cavity are both flat and insulated. The nanofluid is composed of Al2O3 nanoparticles suspended in pure water. In performing the analysis, the governing equations are formulated using the Smoothed Particle Hydrodynamics and the complex-wavy-surface is modeled as the superimposition of two sinusoidal functions. The simulations examine the effects of the volume fraction of nanoparticles, the Rayleigh number and the complex-wavy-surface geometry parameters on the flow streamlines, isotherm distribution and Nusselt number within the cavity. The results show that for all values of the Rayleigh number, the Nusselt number, increases as the volume fraction of nanoparticles increases. In addition, it is shown that the heat transfer performance can be optimized by tuning the wavy-surface geometry parameters in accordance with the Rayleigh number. Overall, the results presented in this study provide a useful insight into potential strategies for enhancing the convection heat transfer performance within enclosed cavities with complex-wavy-wall surfaces.
doi_str_mv 10.1016/j.icheatmasstransfer.2013.02.015
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744710602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193313000432</els_id><sourcerecordid>1744710602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-f4be3212042ae2eaddecb4035d84ba21d26d275ae7835ade66762e5075a9cd023</originalsourceid><addsrcrecordid>eNqNkU1rGzEQQEVpoG6S_7CXgi-7mZG00vrWEvJVAr20kJuQpVksI--60tqJ_31l7PbSSy4Skh5v4ImxOUKDgOpm3QS3IjttbM5TskPuKTUcUDTAG8D2A5thpxc1oO4-shlo0da4EOIT-5zzGgCww27GXu4TUeXGYU9uCuNQHZ3VX2EVhvK22UZ6q1_t_lCWGCsaXBwz-crZfZgOVR9iLKfXMK2qwQ5jH3fBX7GL3sZM1-f9kv26v_t5-1g__3h4uv32XDspuqnu5ZIERw6SW-JkvSe3lCBa38ml5ei58ly3lnQnWutJKa04tVCuFs4DF5dsfvJu0_h7R3kym5AdxWgHGnfZoJZSI6j3oEJzJQqMBf16Ql0ac07Um20KG5sOBsEc-5u1-b-_OfY3wE3pXxRfztNsdjb2hXEh__NwLXEhlSrc9xNHpdI-FEt2oSQmH1L5E-PH8P6hfwDSfakF</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1372637101</pqid></control><display><type>article</type><title>Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid</title><source>Elsevier</source><creator>Mansour, M.A. ; Bakier, M.A.Y.</creator><creatorcontrib>Mansour, M.A. ; Bakier, M.A.Y.</creatorcontrib><description>A numerical investigation is performed into the natural convection heat transfer characteristics within an enclosed cavity filled with nanofluid. The left and right walls of the cavity have a complex-wavy geometry and are maintained at a low and high temperature, respectively. Meanwhile, the upper and lower walls of the cavity are both flat and insulated. The nanofluid is composed of Al2O3 nanoparticles suspended in pure water. In performing the analysis, the governing equations are formulated using the Smoothed Particle Hydrodynamics and the complex-wavy-surface is modeled as the superimposition of two sinusoidal functions. The simulations examine the effects of the volume fraction of nanoparticles, the Rayleigh number and the complex-wavy-surface geometry parameters on the flow streamlines, isotherm distribution and Nusselt number within the cavity. The results show that for all values of the Rayleigh number, the Nusselt number, increases as the volume fraction of nanoparticles increases. In addition, it is shown that the heat transfer performance can be optimized by tuning the wavy-surface geometry parameters in accordance with the Rayleigh number. Overall, the results presented in this study provide a useful insight into potential strategies for enhancing the convection heat transfer performance within enclosed cavities with complex-wavy-wall surfaces.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2013.02.015</identifier><identifier>CODEN: IHMTDL</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Applied sciences ; Chemistry ; Colloidal state and disperse state ; Computational fluid dynamics ; Condensed matter: structure, mechanical and thermal properties ; Energy ; Energy. Thermal use of fuels ; Exact sciences and technology ; Fluid dynamics ; Fluid flow ; Free convection ; Fundamental areas of phenomenology (including applications) ; General and physical chemistry ; Heat transfer ; Holes ; Laminar flows ; Laminar flows in cavities ; Mathematical models ; Nanofluids ; Nanomaterials ; Nanostructure ; Nusselt number ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Physics ; Rayleigh number ; SPH method ; Theoretical studies. Data and constants. Metering ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes ; Wavy-wall cavity</subject><ispartof>International communications in heat and mass transfer, 2013-05, Vol.44, p.108-115</ispartof><rights>2013 Elsevier Ltd</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-f4be3212042ae2eaddecb4035d84ba21d26d275ae7835ade66762e5075a9cd023</citedby><cites>FETCH-LOGICAL-c438t-f4be3212042ae2eaddecb4035d84ba21d26d275ae7835ade66762e5075a9cd023</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27419466$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Mansour, M.A.</creatorcontrib><creatorcontrib>Bakier, M.A.Y.</creatorcontrib><title>Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid</title><title>International communications in heat and mass transfer</title><description>A numerical investigation is performed into the natural convection heat transfer characteristics within an enclosed cavity filled with nanofluid. The left and right walls of the cavity have a complex-wavy geometry and are maintained at a low and high temperature, respectively. Meanwhile, the upper and lower walls of the cavity are both flat and insulated. The nanofluid is composed of Al2O3 nanoparticles suspended in pure water. In performing the analysis, the governing equations are formulated using the Smoothed Particle Hydrodynamics and the complex-wavy-surface is modeled as the superimposition of two sinusoidal functions. The simulations examine the effects of the volume fraction of nanoparticles, the Rayleigh number and the complex-wavy-surface geometry parameters on the flow streamlines, isotherm distribution and Nusselt number within the cavity. The results show that for all values of the Rayleigh number, the Nusselt number, increases as the volume fraction of nanoparticles increases. In addition, it is shown that the heat transfer performance can be optimized by tuning the wavy-surface geometry parameters in accordance with the Rayleigh number. Overall, the results presented in this study provide a useful insight into potential strategies for enhancing the convection heat transfer performance within enclosed cavities with complex-wavy-wall surfaces.</description><subject>Applied sciences</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Computational fluid dynamics</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Energy</subject><subject>Energy. Thermal use of fuels</subject><subject>Exact sciences and technology</subject><subject>Fluid dynamics</subject><subject>Fluid flow</subject><subject>Free convection</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>General and physical chemistry</subject><subject>Heat transfer</subject><subject>Holes</subject><subject>Laminar flows</subject><subject>Laminar flows in cavities</subject><subject>Mathematical models</subject><subject>Nanofluids</subject><subject>Nanomaterials</subject><subject>Nanostructure</subject><subject>Nusselt number</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Physics</subject><subject>Rayleigh number</subject><subject>SPH method</subject><subject>Theoretical studies. Data and constants. Metering</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><subject>Wavy-wall cavity</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rGzEQQEVpoG6S_7CXgi-7mZG00vrWEvJVAr20kJuQpVksI--60tqJ_31l7PbSSy4Skh5v4ImxOUKDgOpm3QS3IjttbM5TskPuKTUcUDTAG8D2A5thpxc1oO4-shlo0da4EOIT-5zzGgCww27GXu4TUeXGYU9uCuNQHZ3VX2EVhvK22UZ6q1_t_lCWGCsaXBwz-crZfZgOVR9iLKfXMK2qwQ5jH3fBX7GL3sZM1-f9kv26v_t5-1g__3h4uv32XDspuqnu5ZIERw6SW-JkvSe3lCBa38ml5ei58ly3lnQnWutJKa04tVCuFs4DF5dsfvJu0_h7R3kym5AdxWgHGnfZoJZSI6j3oEJzJQqMBf16Ql0ac07Um20KG5sOBsEc-5u1-b-_OfY3wE3pXxRfztNsdjb2hXEh__NwLXEhlSrc9xNHpdI-FEt2oSQmH1L5E-PH8P6hfwDSfakF</recordid><startdate>20130501</startdate><enddate>20130501</enddate><creator>Mansour, M.A.</creator><creator>Bakier, M.A.Y.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20130501</creationdate><title>Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid</title><author>Mansour, M.A. ; Bakier, M.A.Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-f4be3212042ae2eaddecb4035d84ba21d26d275ae7835ade66762e5075a9cd023</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Applied sciences</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Computational fluid dynamics</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Energy</topic><topic>Energy. Thermal use of fuels</topic><topic>Exact sciences and technology</topic><topic>Fluid dynamics</topic><topic>Fluid flow</topic><topic>Free convection</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>General and physical chemistry</topic><topic>Heat transfer</topic><topic>Holes</topic><topic>Laminar flows</topic><topic>Laminar flows in cavities</topic><topic>Mathematical models</topic><topic>Nanofluids</topic><topic>Nanomaterials</topic><topic>Nanostructure</topic><topic>Nusselt number</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Physics</topic><topic>Rayleigh number</topic><topic>SPH method</topic><topic>Theoretical studies. Data and constants. Metering</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><topic>Wavy-wall cavity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mansour, M.A.</creatorcontrib><creatorcontrib>Bakier, M.A.Y.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mansour, M.A.</au><au>Bakier, M.A.Y.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2013-05-01</date><risdate>2013</risdate><volume>44</volume><spage>108</spage><epage>115</epage><pages>108-115</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><coden>IHMTDL</coden><abstract>A numerical investigation is performed into the natural convection heat transfer characteristics within an enclosed cavity filled with nanofluid. The left and right walls of the cavity have a complex-wavy geometry and are maintained at a low and high temperature, respectively. Meanwhile, the upper and lower walls of the cavity are both flat and insulated. The nanofluid is composed of Al2O3 nanoparticles suspended in pure water. In performing the analysis, the governing equations are formulated using the Smoothed Particle Hydrodynamics and the complex-wavy-surface is modeled as the superimposition of two sinusoidal functions. The simulations examine the effects of the volume fraction of nanoparticles, the Rayleigh number and the complex-wavy-surface geometry parameters on the flow streamlines, isotherm distribution and Nusselt number within the cavity. The results show that for all values of the Rayleigh number, the Nusselt number, increases as the volume fraction of nanoparticles increases. In addition, it is shown that the heat transfer performance can be optimized by tuning the wavy-surface geometry parameters in accordance with the Rayleigh number. Overall, the results presented in this study provide a useful insight into potential strategies for enhancing the convection heat transfer performance within enclosed cavities with complex-wavy-wall surfaces.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2013.02.015</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2013-05, Vol.44, p.108-115
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1744710602
source Elsevier
subjects Applied sciences
Chemistry
Colloidal state and disperse state
Computational fluid dynamics
Condensed matter: structure, mechanical and thermal properties
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fluid dynamics
Fluid flow
Free convection
Fundamental areas of phenomenology (including applications)
General and physical chemistry
Heat transfer
Holes
Laminar flows
Laminar flows in cavities
Mathematical models
Nanofluids
Nanomaterials
Nanostructure
Nusselt number
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Physics
Rayleigh number
SPH method
Theoretical studies. Data and constants. Metering
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
Wavy-wall cavity
title Free convection heat transfer in complex-wavy-wall enclosed cavity filled with nanofluid
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A15%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Free%20convection%20heat%20transfer%20in%20complex-wavy-wall%20enclosed%20cavity%20filled%20with%20nanofluid&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Mansour,%20M.A.&rft.date=2013-05-01&rft.volume=44&rft.spage=108&rft.epage=115&rft.pages=108-115&rft.issn=0735-1933&rft.eissn=1879-0178&rft.coden=IHMTDL&rft_id=info:doi/10.1016/j.icheatmasstransfer.2013.02.015&rft_dat=%3Cproquest_cross%3E1744710602%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-f4be3212042ae2eaddecb4035d84ba21d26d275ae7835ade66762e5075a9cd023%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1372637101&rft_id=info:pmid/&rfr_iscdi=true