Loading…
Quantitative analysis on microstructure evolution of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy during isothermal compression
Isothermal compression tests of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy were conducted at a Gleeble-1500 simulator in deformation temperature range of 1103–1243K, strain rate range of 0.01–5.00 s-1and height reduction range of 50 %–70 %. The effects of processing parameters on morphology, grain size and...
Saved in:
Published in: | Rare metals 2015-09, Vol.34 (9), p.625-631 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Isothermal compression tests of Ti-6Al-2Zr-2Sn-2Mo-1.5Cr-2Nb alloy were conducted at a Gleeble-1500 simulator in deformation temperature range of 1103–1243K, strain rate range of 0.01–5.00 s-1and height reduction range of 50 %–70 %. The effects of processing parameters on morphology, grain size and contents of a and b phases were discussed based on the quantitative microstructure examination, and the detailed explanation was shown. The results show that b transformed matrix will obviously grow up at higher deformation temperature or lower strain rate because of low grain growth activation energies. The content of a phase will decrease at higher deformation temperature or higher strain rate due to the phase transformation. Some elongated a or b grains exist at higher strain rate, implying that the dominant softening mechanism is dynamic recovery. The effect of height reduction on b transformed matrix is negligible, but the height reduction has some effects on the morphology of primary a phase. |
---|---|
ISSN: | 1001-0521 1867-7185 |
DOI: | 10.1007/s12598-015-0522-5 |