Loading…
On the geometry of a smooth model of a fibre product of families of K3 surfaces
The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary...
Saved in:
Published in: | Sbornik. Mathematics 2014-01, Vol.205 (2), p.269-276 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3 |
container_end_page | 276 |
container_issue | 2 |
container_start_page | 269 |
container_title | Sbornik. Mathematics |
container_volume | 205 |
creator | Nikol'skaya, O. V. |
description | The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles. |
doi_str_mv | 10.1070/SM2014v205n02ABEH004374 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744719939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744719939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEEuXxG4jEhUvAr9jJsVRAEUU9AGfL2axpqiQutoPUf0-qcEWcdjT6ZrU7SXJFyS0lity9vTJCxTcjeU_Y_P5hSYjgShwlMypkkYmCsONREymyXFJ5mpyFsCWE5IwWs2S97tO4wfQTXYfR71NnU5OGzrm4STtXYzs5tqk8pjvv6gHiwbKma9oGw0G_8DQM3hrAcJGcWNMGvPyd58nH48P7Ypmt1k_Pi_kqAy5ZzETFDRgpwMpRyKqGPM_Lgko0Qlla1UWdKwoVAlNFKa0qS1sV1IJCAiCRnyfX014XYqMDNBFhA67vEaJmjMtc8WKkbiZqPPxrwBB11wTAtjU9uiFoqoRQtCx5OaJqQsG7EDxavfNNZ_xeU6IPRes_ih6TfEo2bqe3bvD9-Pi_qR_PHYBP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744719939</pqid></control><display><type>article</type><title>On the geometry of a smooth model of a fibre product of families of K3 surfaces</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Nikol'skaya, O. V.</creator><creatorcontrib>Nikol'skaya, O. V.</creatorcontrib><description>The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2014v205n02ABEH004374</identifier><language>eng</language><publisher>United States: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Algebra ; Curves (geometry) ; DIAGRAMS ; FIBERS ; Fibre ; Fibres ; Fields (mathematics) ; GEOMETRY ; Hodge conjecture ; K3 surface ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MATHEMATICAL SOLUTIONS ; MATHEMATICAL SPACE ; Number theory ; SURFACES</subject><ispartof>Sbornik. Mathematics, 2014-01, Vol.205 (2), p.269-276</ispartof><rights>2014 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</citedby><cites>FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22365738$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikol'skaya, O. V.</creatorcontrib><title>On the geometry of a smooth model of a fibre product of families of K3 surfaces</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles.</description><subject>Algebra</subject><subject>Curves (geometry)</subject><subject>DIAGRAMS</subject><subject>FIBERS</subject><subject>Fibre</subject><subject>Fibres</subject><subject>Fields (mathematics)</subject><subject>GEOMETRY</subject><subject>Hodge conjecture</subject><subject>K3 surface</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MATHEMATICAL SPACE</subject><subject>Number theory</subject><subject>SURFACES</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEEuXxG4jEhUvAr9jJsVRAEUU9AGfL2axpqiQutoPUf0-qcEWcdjT6ZrU7SXJFyS0lity9vTJCxTcjeU_Y_P5hSYjgShwlMypkkYmCsONREymyXFJ5mpyFsCWE5IwWs2S97tO4wfQTXYfR71NnU5OGzrm4STtXYzs5tqk8pjvv6gHiwbKma9oGw0G_8DQM3hrAcJGcWNMGvPyd58nH48P7Ypmt1k_Pi_kqAy5ZzETFDRgpwMpRyKqGPM_Lgko0Qlla1UWdKwoVAlNFKa0qS1sV1IJCAiCRnyfX014XYqMDNBFhA67vEaJmjMtc8WKkbiZqPPxrwBB11wTAtjU9uiFoqoRQtCx5OaJqQsG7EDxavfNNZ_xeU6IPRes_ih6TfEo2bqe3bvD9-Pi_qR_PHYBP</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Nikol'skaya, O. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140101</creationdate><title>On the geometry of a smooth model of a fibre product of families of K3 surfaces</title><author>Nikol'skaya, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Curves (geometry)</topic><topic>DIAGRAMS</topic><topic>FIBERS</topic><topic>Fibre</topic><topic>Fibres</topic><topic>Fields (mathematics)</topic><topic>GEOMETRY</topic><topic>Hodge conjecture</topic><topic>K3 surface</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MATHEMATICAL SPACE</topic><topic>Number theory</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikol'skaya, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikol'skaya, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the geometry of a smooth model of a fibre product of families of K3 surfaces</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>205</volume><issue>2</issue><spage>269</spage><epage>276</epage><pages>269-276</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles.</abstract><cop>United States</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM2014v205n02ABEH004374</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1064-5616 |
ispartof | Sbornik. Mathematics, 2014-01, Vol.205 (2), p.269-276 |
issn | 1064-5616 1468-4802 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744719939 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Algebra Curves (geometry) DIAGRAMS FIBERS Fibre Fibres Fields (mathematics) GEOMETRY Hodge conjecture K3 surface MATHEMATICAL METHODS AND COMPUTING MATHEMATICAL MODELS MATHEMATICAL OPERATORS MATHEMATICAL SOLUTIONS MATHEMATICAL SPACE Number theory SURFACES |
title | On the geometry of a smooth model of a fibre product of families of K3 surfaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20geometry%20of%20a%20smooth%20model%20of%20a%20fibre%20product%20of%20families%20of%20K3%20surfaces&rft.jtitle=Sbornik.%20Mathematics&rft.au=Nikol'skaya,%20O.%20V.&rft.date=2014-01-01&rft.volume=205&rft.issue=2&rft.spage=269&rft.epage=276&rft.pages=269-276&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2014v205n02ABEH004374&rft_dat=%3Cproquest_cross%3E1744719939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744719939&rft_id=info:pmid/&rfr_iscdi=true |