Loading…

On the geometry of a smooth model of a fibre product of families of K3 surfaces

The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary...

Full description

Saved in:
Bibliographic Details
Published in:Sbornik. Mathematics 2014-01, Vol.205 (2), p.269-276
Main Author: Nikol'skaya, O. V.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3
cites cdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3
container_end_page 276
container_issue 2
container_start_page 269
container_title Sbornik. Mathematics
container_volume 205
creator Nikol'skaya, O. V.
description The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles.
doi_str_mv 10.1070/SM2014v205n02ABEH004374
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744719939</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1744719939</sourcerecordid><originalsourceid>FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhCMEEuXxG4jEhUvAr9jJsVRAEUU9AGfL2axpqiQutoPUf0-qcEWcdjT6ZrU7SXJFyS0lity9vTJCxTcjeU_Y_P5hSYjgShwlMypkkYmCsONREymyXFJ5mpyFsCWE5IwWs2S97tO4wfQTXYfR71NnU5OGzrm4STtXYzs5tqk8pjvv6gHiwbKma9oGw0G_8DQM3hrAcJGcWNMGvPyd58nH48P7Ypmt1k_Pi_kqAy5ZzETFDRgpwMpRyKqGPM_Lgko0Qlla1UWdKwoVAlNFKa0qS1sV1IJCAiCRnyfX014XYqMDNBFhA67vEaJmjMtc8WKkbiZqPPxrwBB11wTAtjU9uiFoqoRQtCx5OaJqQsG7EDxavfNNZ_xeU6IPRes_ih6TfEo2bqe3bvD9-Pi_qR_PHYBP</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744719939</pqid></control><display><type>article</type><title>On the geometry of a smooth model of a fibre product of families of K3 surfaces</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Nikol'skaya, O. V.</creator><creatorcontrib>Nikol'skaya, O. V.</creatorcontrib><description>The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles.</description><identifier>ISSN: 1064-5616</identifier><identifier>EISSN: 1468-4802</identifier><identifier>DOI: 10.1070/SM2014v205n02ABEH004374</identifier><language>eng</language><publisher>United States: London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</publisher><subject>Algebra ; Curves (geometry) ; DIAGRAMS ; FIBERS ; Fibre ; Fibres ; Fields (mathematics) ; GEOMETRY ; Hodge conjecture ; K3 surface ; MATHEMATICAL METHODS AND COMPUTING ; MATHEMATICAL MODELS ; MATHEMATICAL OPERATORS ; MATHEMATICAL SOLUTIONS ; MATHEMATICAL SPACE ; Number theory ; SURFACES</subject><ispartof>Sbornik. Mathematics, 2014-01, Vol.205 (2), p.269-276</ispartof><rights>2014 Russian Academy of Sciences (DoM), London Mathematical Society, Turpion Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</citedby><cites>FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27923,27924</link.rule.ids><backlink>$$Uhttps://www.osti.gov/biblio/22365738$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Nikol'skaya, O. V.</creatorcontrib><title>On the geometry of a smooth model of a fibre product of families of K3 surfaces</title><title>Sbornik. Mathematics</title><addtitle>MSB</addtitle><addtitle>Sb. Math</addtitle><description>The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles.</description><subject>Algebra</subject><subject>Curves (geometry)</subject><subject>DIAGRAMS</subject><subject>FIBERS</subject><subject>Fibre</subject><subject>Fibres</subject><subject>Fields (mathematics)</subject><subject>GEOMETRY</subject><subject>Hodge conjecture</subject><subject>K3 surface</subject><subject>MATHEMATICAL METHODS AND COMPUTING</subject><subject>MATHEMATICAL MODELS</subject><subject>MATHEMATICAL OPERATORS</subject><subject>MATHEMATICAL SOLUTIONS</subject><subject>MATHEMATICAL SPACE</subject><subject>Number theory</subject><subject>SURFACES</subject><issn>1064-5616</issn><issn>1468-4802</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhCMEEuXxG4jEhUvAr9jJsVRAEUU9AGfL2axpqiQutoPUf0-qcEWcdjT6ZrU7SXJFyS0lity9vTJCxTcjeU_Y_P5hSYjgShwlMypkkYmCsONREymyXFJ5mpyFsCWE5IwWs2S97tO4wfQTXYfR71NnU5OGzrm4STtXYzs5tqk8pjvv6gHiwbKma9oGw0G_8DQM3hrAcJGcWNMGvPyd58nH48P7Ypmt1k_Pi_kqAy5ZzETFDRgpwMpRyKqGPM_Lgko0Qlla1UWdKwoVAlNFKa0qS1sV1IJCAiCRnyfX014XYqMDNBFhA67vEaJmjMtc8WKkbiZqPPxrwBB11wTAtjU9uiFoqoRQtCx5OaJqQsG7EDxavfNNZ_xeU6IPRes_ih6TfEo2bqe3bvD9-Pi_qR_PHYBP</recordid><startdate>20140101</startdate><enddate>20140101</enddate><creator>Nikol'skaya, O. V.</creator><general>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope><scope>OTOTI</scope></search><sort><creationdate>20140101</creationdate><title>On the geometry of a smooth model of a fibre product of families of K3 surfaces</title><author>Nikol'skaya, O. V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Algebra</topic><topic>Curves (geometry)</topic><topic>DIAGRAMS</topic><topic>FIBERS</topic><topic>Fibre</topic><topic>Fibres</topic><topic>Fields (mathematics)</topic><topic>GEOMETRY</topic><topic>Hodge conjecture</topic><topic>K3 surface</topic><topic>MATHEMATICAL METHODS AND COMPUTING</topic><topic>MATHEMATICAL MODELS</topic><topic>MATHEMATICAL OPERATORS</topic><topic>MATHEMATICAL SOLUTIONS</topic><topic>MATHEMATICAL SPACE</topic><topic>Number theory</topic><topic>SURFACES</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Nikol'skaya, O. V.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>OSTI.GOV</collection><jtitle>Sbornik. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Nikol'skaya, O. V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>On the geometry of a smooth model of a fibre product of families of K3 surfaces</atitle><jtitle>Sbornik. Mathematics</jtitle><stitle>MSB</stitle><addtitle>Sb. Math</addtitle><date>2014-01-01</date><risdate>2014</risdate><volume>205</volume><issue>2</issue><spage>269</spage><epage>276</epage><pages>269-276</pages><issn>1064-5616</issn><eissn>1468-4802</eissn><abstract>The Hodge conjecture on algebraic cycles is proved for a smooth projective model of a fibre product of nonisotrivial 1-parameter families of K3 surfaces (possibly with degeneracies) over a smooth projective curve under the assumption that, for generic geometric fibres and , the ring is an imaginary quadratic field, , and is a totally real field or else . Bibliography: 10 titles.</abstract><cop>United States</cop><pub>London Mathematical Society, Turpion Ltd and the Russian Academy of Sciences</pub><doi>10.1070/SM2014v205n02ABEH004374</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1064-5616
ispartof Sbornik. Mathematics, 2014-01, Vol.205 (2), p.269-276
issn 1064-5616
1468-4802
language eng
recordid cdi_proquest_miscellaneous_1744719939
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Algebra
Curves (geometry)
DIAGRAMS
FIBERS
Fibre
Fibres
Fields (mathematics)
GEOMETRY
Hodge conjecture
K3 surface
MATHEMATICAL METHODS AND COMPUTING
MATHEMATICAL MODELS
MATHEMATICAL OPERATORS
MATHEMATICAL SOLUTIONS
MATHEMATICAL SPACE
Number theory
SURFACES
title On the geometry of a smooth model of a fibre product of families of K3 surfaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T13%3A11%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=On%20the%20geometry%20of%20a%20smooth%20model%20of%20a%20fibre%20product%20of%20families%20of%20K3%20surfaces&rft.jtitle=Sbornik.%20Mathematics&rft.au=Nikol'skaya,%20O.%20V.&rft.date=2014-01-01&rft.volume=205&rft.issue=2&rft.spage=269&rft.epage=276&rft.pages=269-276&rft.issn=1064-5616&rft.eissn=1468-4802&rft_id=info:doi/10.1070/SM2014v205n02ABEH004374&rft_dat=%3Cproquest_cross%3E1744719939%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c362t-4b3aca64cf63ac6bdc5559816ea47f1bd8d571cbec27896f799fb81fc7e0cc6e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744719939&rft_id=info:pmid/&rfr_iscdi=true