Loading…

Analysis of a new two-lane lattice hydrodynamic model with consideration of the global average flux

A new two-lane traffic lattice hydrodynamic model is proposed with the consideration of the global average-and-optimal flux difference effect based on the local relative flux two-lane lattice model. First, the influence of the global average-and-optimal flux difference on the stability of traffic fl...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics 2015-09, Vol.81 (4), p.1623-1633
Main Authors: Zhang, Geng, Sun, Di-Hua, Liu, Wei-Ning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new two-lane traffic lattice hydrodynamic model is proposed with the consideration of the global average-and-optimal flux difference effect based on the local relative flux two-lane lattice model. First, the influence of the global average-and-optimal flux difference on the stability of traffic flow is investigated through linear stability theory. The results reveal that the unstable region will be shrunk by taking the global average-and-optimal flux difference effect into account. Additionally, by using the reductive perturbation method, the mKdV equation near the critical point is derived and traffic jam transition can be described by its kink–antikink soliton solution. The good agreement between the numerical simulations and the analytical results shows that traffic congestion can be suppressed efficiently by considering the global average-and-optimal flux difference and the local relative flux effects in two-lane traffic system and the local relative flux is more important than the global average-and-optimal flux difference in stabilizing traffic flow.
ISSN:0924-090X
1573-269X
DOI:10.1007/s11071-015-2095-0