Loading…
Half thresholding eigenvalue algorithm for semidefinite matrix completion
The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the...
Saved in:
Published in: | Science China. Mathematics 2015-09, Vol.58 (9), p.2015-2032 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c370t-602ad97947637abbd4b82037378dafe12bfb3aa33910229d75175c40f4672fcd3 |
container_end_page | 2032 |
container_issue | 9 |
container_start_page | 2015 |
container_title | Science China. Mathematics |
container_volume | 58 |
creator | Chen, YongQiang Luo, ZiYan Xiu, NaiHua |
description | The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm. |
doi_str_mv | 10.1007/s11425-015-5052-y |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1744730218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665849994</cqvip_id><sourcerecordid>1744730218</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-602ad97947637abbd4b82037378dafe12bfb3aa33910229d75175c40f4672fcd3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EElXpB2CLmFgM_pc4HlEFtFIlFpgtJ7ETV07c2gmi3x5XqRi54e6G97unewDcY_SEEeLPEWNGcohwDnOUE3i6AgtcFgKmRq7TXnAGOSnpLVjFuEepqECM0wXYbpQz2dgFHTvvGju0mbatHr6Vm3SmXOuDHbs-Mz5kUfe20cYOdtRZr8Zgf7La9wenR-uHO3BjlIt6dZlL8PX2-rnewN3H-3b9soM15WiEBSKqEVwwXlCuqqphVUkQ5ZSXjTIak8pUVClKBUaEiIbnmOc1Q4YVnJi6oUvwON89BH-cdBxlb2OtnVOD9lOUmLP0GSK4TFI8S-vgYwzayEOwvQoniZE8Jyfn5GRKTp6Tk6fEkJmJSTu0Osi9n8KQPvoXergYdX5oj4n7cyqKvGRCCEZ_ARiTfQ4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1744730218</pqid></control><display><type>article</type><title>Half thresholding eigenvalue algorithm for semidefinite matrix completion</title><source>Springer Nature</source><creator>Chen, YongQiang ; Luo, ZiYan ; Xiu, NaiHua</creator><creatorcontrib>Chen, YongQiang ; Luo, ZiYan ; Xiu, NaiHua</creatorcontrib><description>The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.</description><identifier>ISSN: 1674-7283</identifier><identifier>EISSN: 1869-1862</identifier><identifier>DOI: 10.1007/s11425-015-5052-y</identifier><language>eng</language><publisher>Beijing: Science China Press</publisher><subject>Algorithms ; Applications of Mathematics ; Convergence ; Eigenvalues ; Iterative methods ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Optimization ; Regularization ; Robustness ; 全局最优解 ; 半正定矩阵 ; 参赛作品 ; 对称矩阵 ; 收敛性分析 ; 特征值 ; 算法 ; 阈值</subject><ispartof>Science China. Mathematics, 2015-09, Vol.58 (9), p.2015-2032</ispartof><rights>Science China Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c370t-602ad97947637abbd4b82037378dafe12bfb3aa33910229d75175c40f4672fcd3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/60114X/60114X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Chen, YongQiang</creatorcontrib><creatorcontrib>Luo, ZiYan</creatorcontrib><creatorcontrib>Xiu, NaiHua</creatorcontrib><title>Half thresholding eigenvalue algorithm for semidefinite matrix completion</title><title>Science China. Mathematics</title><addtitle>Sci. China Math</addtitle><addtitle>SCIENCE CHINA Mathematics</addtitle><description>The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.</description><subject>Algorithms</subject><subject>Applications of Mathematics</subject><subject>Convergence</subject><subject>Eigenvalues</subject><subject>Iterative methods</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Robustness</subject><subject>全局最优解</subject><subject>半正定矩阵</subject><subject>参赛作品</subject><subject>对称矩阵</subject><subject>收敛性分析</subject><subject>特征值</subject><subject>算法</subject><subject>阈值</subject><issn>1674-7283</issn><issn>1869-1862</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kD9PwzAQxS0EElXpB2CLmFgM_pc4HlEFtFIlFpgtJ7ETV07c2gmi3x5XqRi54e6G97unewDcY_SEEeLPEWNGcohwDnOUE3i6AgtcFgKmRq7TXnAGOSnpLVjFuEepqECM0wXYbpQz2dgFHTvvGju0mbatHr6Vm3SmXOuDHbs-Mz5kUfe20cYOdtRZr8Zgf7La9wenR-uHO3BjlIt6dZlL8PX2-rnewN3H-3b9soM15WiEBSKqEVwwXlCuqqphVUkQ5ZSXjTIak8pUVClKBUaEiIbnmOc1Q4YVnJi6oUvwON89BH-cdBxlb2OtnVOD9lOUmLP0GSK4TFI8S-vgYwzayEOwvQoniZE8Jyfn5GRKTp6Tk6fEkJmJSTu0Osi9n8KQPvoXergYdX5oj4n7cyqKvGRCCEZ_ARiTfQ4</recordid><startdate>20150901</startdate><enddate>20150901</enddate><creator>Chen, YongQiang</creator><creator>Luo, ZiYan</creator><creator>Xiu, NaiHua</creator><general>Science China Press</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope></search><sort><creationdate>20150901</creationdate><title>Half thresholding eigenvalue algorithm for semidefinite matrix completion</title><author>Chen, YongQiang ; Luo, ZiYan ; Xiu, NaiHua</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-602ad97947637abbd4b82037378dafe12bfb3aa33910229d75175c40f4672fcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Applications of Mathematics</topic><topic>Convergence</topic><topic>Eigenvalues</topic><topic>Iterative methods</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Robustness</topic><topic>全局最优解</topic><topic>半正定矩阵</topic><topic>参赛作品</topic><topic>对称矩阵</topic><topic>收敛性分析</topic><topic>特征值</topic><topic>算法</topic><topic>阈值</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, YongQiang</creatorcontrib><creatorcontrib>Luo, ZiYan</creatorcontrib><creatorcontrib>Xiu, NaiHua</creatorcontrib><collection>维普_期刊</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>维普中文期刊数据库</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Science China. Mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, YongQiang</au><au>Luo, ZiYan</au><au>Xiu, NaiHua</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Half thresholding eigenvalue algorithm for semidefinite matrix completion</atitle><jtitle>Science China. Mathematics</jtitle><stitle>Sci. China Math</stitle><addtitle>SCIENCE CHINA Mathematics</addtitle><date>2015-09-01</date><risdate>2015</risdate><volume>58</volume><issue>9</issue><spage>2015</spage><epage>2032</epage><pages>2015-2032</pages><issn>1674-7283</issn><eissn>1869-1862</eissn><abstract>The semidefinite matrix completion(SMC) problem is to recover a low-rank positive semidefinite matrix from a small subset of its entries. It is well known but NP-hard in general. We first show that under some cases, SMC problem and S1/2relaxation model share a unique solution. Then we prove that the global optimal solutions of S1/2regularization model are fixed points of a symmetric matrix half thresholding operator. We give an iterative scheme for solving S1/2regularization model and state convergence analysis of the iterative sequence.Through the optimal regularization parameter setting together with truncation techniques, we develop an HTE algorithm for S1/2regularization model, and numerical experiments confirm the efficiency and robustness of the proposed algorithm.</abstract><cop>Beijing</cop><pub>Science China Press</pub><doi>10.1007/s11425-015-5052-y</doi><tpages>18</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1674-7283 |
ispartof | Science China. Mathematics, 2015-09, Vol.58 (9), p.2015-2032 |
issn | 1674-7283 1869-1862 |
language | eng |
recordid | cdi_proquest_miscellaneous_1744730218 |
source | Springer Nature |
subjects | Algorithms Applications of Mathematics Convergence Eigenvalues Iterative methods Mathematical models Mathematics Mathematics and Statistics Optimization Regularization Robustness 全局最优解 半正定矩阵 参赛作品 对称矩阵 收敛性分析 特征值 算法 阈值 |
title | Half thresholding eigenvalue algorithm for semidefinite matrix completion |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T19%3A41%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Half%20thresholding%20eigenvalue%20algorithm%20for%20semidefinite%20matrix%20completion&rft.jtitle=Science%20China.%20Mathematics&rft.au=Chen,%20YongQiang&rft.date=2015-09-01&rft.volume=58&rft.issue=9&rft.spage=2015&rft.epage=2032&rft.pages=2015-2032&rft.issn=1674-7283&rft.eissn=1869-1862&rft_id=info:doi/10.1007/s11425-015-5052-y&rft_dat=%3Cproquest_cross%3E1744730218%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-602ad97947637abbd4b82037378dafe12bfb3aa33910229d75175c40f4672fcd3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1744730218&rft_id=info:pmid/&rft_cqvip_id=665849994&rfr_iscdi=true |