Loading…

Deoxynivalenol (DON) sulfonates as major DON metabolites in rats: from identification to biomarker method development, validation and application

Deoxynivalenol (DON) is a trichothecene mycotoxin regularly occurring in cereals. Rats are often used to study toxicokinetics of DON and related compounds, yet only about 30 % of the administered dose is typically recovered. Recently, it was reported that DON is partly metabolised to previously unde...

Full description

Saved in:
Bibliographic Details
Published in:Analytical and bioanalytical chemistry 2014-12, Vol.406 (30), p.7911-7924
Main Authors: Schwartz-Zimmermann, Heidi E., Hametner, Christian, Nagl, Veronika, Slavik, Veronika, Moll, Wulf-Dieter, Berthiller, Franz
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Deoxynivalenol (DON) is a trichothecene mycotoxin regularly occurring in cereals. Rats are often used to study toxicokinetics of DON and related compounds, yet only about 30 % of the administered dose is typically recovered. Recently, it was reported that DON is partly metabolised to previously undetected DON- and deepoxy-DON (DOM) sulfonate in rats and tentative structures were proposed. The present work describes the production and characterisation of DON-, DOM- and DON-3-glucoside (D3G) sulfonates of three different series; the development and validation of liquid chromatography tandem mass spectrometry (LC-MS/MS)-based methods for determination of DON, DOM, D3G and their sulfonates in rat faeces and urine; and application of the methods to samples from a DON and D3G feeding trial with rats. In addition to previously produced DON sulfonates (DONS) 1, 2 and 3, D3G sulfonates 1, 2 and 3; and DOM sulfonates (DOMS) 2 and 3 were synthesised, purified and characterised. The developed methods showed apparent recoveries of all investigated compounds between 68 and 151 % in faeces and between 48 and 113 % in urine. The recovery of DON, D3G and their metabolites from faeces and urine of rats ( n  = 6) administered in a single dose of 2.0 mg/kg b.w. DON or the equimolar amount of D3G was 75 ± 9 % for the DON group and 68 ± 8 % for the D3G group. DON-, DOM- and D3G sulfonates excreted in faeces accounted for 48 and 47 % of the total amount of administered DON and D3G. Urinary excretion of sulfonates was
ISSN:1618-2642
1618-2650
DOI:10.1007/s00216-014-8252-3