Loading…

Carbofuran and malathion inhibit nucleotide hydrolysis in zebrafish ( Danio rerio) brain membranes

Carbofuran and malathion are broad spectrum pesticides widely used in agricultural practice throughout the world. Toxicity of these pesticides has been correlated with their inhibitory effects on acetylcholinesterase activity. Nucleotides are extracellular signaling molecules, which trigger multiple...

Full description

Saved in:
Bibliographic Details
Published in:Toxicology (Amsterdam) 2005-09, Vol.212 (2), p.107-115
Main Authors: Senger, Mario Roberto, Rico, Eduardo Pacheco, Arizi, Marcelo de Bem, Rosemberg, Denis Broock, Dias, Renato Dutra, Bogo, Maurício Reis, Bonan, Carla Denise
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Carbofuran and malathion are broad spectrum pesticides widely used in agricultural practice throughout the world. Toxicity of these pesticides has been correlated with their inhibitory effects on acetylcholinesterase activity. Nucleotides are extracellular signaling molecules, which trigger multiple biological effects. Studies have demonstrated the co-transmission of acetylcholine and ATP at the nerve endings. The control of neurotransmitter ATP levels is promoted by enzymes named ectonucleotidases, which include nucleoside triphosphate diphosphohydrolase (NTPDase) family and ecto-5′-nucleotidase. Since acetylcholine and ATP are co-released at the synapse and the acetylcholinesterase inhibition is an important target for pesticide action, here we verified the effect of exposure in vitro and in vivo to carbofuran and malathion on ectonucleotidase activities from brain membranes of zebrafish. To verify if carbofuran and malathion have a direct inhibitory effect on NTPDase and 5′-nucleotidase activities in brain membranes of zebrafish, we have tested in vitro concentrations of pesticides varying from 0.25 to 5 mM. Carbofuran, in vitro, inhibited ATP and ADP hydrolysis in an uncompetitive manner, but no effect was observed on AMP hydrolysis. Malathion decreased ATP and ADP hydrolysis in competitive and an uncompetitive manner, respectively, but not altered AMP hydrolysis. After exposure to carbofuran (50 and 500 μg/L) during 7 days, ADP hydrolysis was significantly decreased in both concentrations tested (by 19 and 24.5%, respectively). Malathion, at 500 μg/L, was able to inhibit ADP and AMP hydrolysis (by 28 and 58.5%, respectively). This study has shown that ectonucleotidases from brain membranes of zebrafish can be a potential target for pesticide neurotoxicity.
ISSN:0300-483X
1879-3185
DOI:10.1016/j.tox.2005.04.007