Loading…

Voltage gated sodium channels as drug discovery targets

Voltage-gated sodium (Na V ) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade o...

Full description

Saved in:
Bibliographic Details
Published in:Channels (Austin, Tex.) Tex.), 2015-11, Vol.9 (6), p.360-366
Main Authors: Bagal, Sharan K, Marron, Brian E, Owen, Robert M, Storer, R Ian, Swain, Nigel A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c468t-11be26f9d27707a195014f4884487fd474e029d5ecd7f8175075b414d4cfa9393
cites cdi_FETCH-LOGICAL-c468t-11be26f9d27707a195014f4884487fd474e029d5ecd7f8175075b414d4cfa9393
container_end_page 366
container_issue 6
container_start_page 360
container_title Channels (Austin, Tex.)
container_volume 9
creator Bagal, Sharan K
Marron, Brian E
Owen, Robert M
Storer, R Ian
Swain, Nigel A
description Voltage-gated sodium (Na V ) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of Na V s has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.
doi_str_mv 10.1080/19336950.2015.1079674
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747326783</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747326783</sourcerecordid><originalsourceid>FETCH-LOGICAL-c468t-11be26f9d27707a195014f4884487fd474e029d5ecd7f8175075b414d4cfa9393</originalsourceid><addsrcrecordid>eNp9kMtOwzAQRS0EoqXwCaAs2bTYjuPHBoEqXlIlNsDWcmM7DXLiYjtF_XtS9SHYsJrRzJ07MweASwQnCHJ4g0SeU1HACYao6EtMUEaOwHBTH1NBxfEhL-AAnMX4CSHNMUKnYIApJZQwNgTsw7ukKpNVKhmdRa_rrsnKhWpb42KmYqZDV2W6jqVfmbDOkgqVSfEcnFjlornYxRF4f3x4mz6PZ69PL9P72bgklKcxQnODqRUaMwaZQv0tiFjCOSGcWU0YMRALXZhSM8sRKyAr5gQRTUqrRC7yEbjd-i67eWN0adoUlJPLUDcqrKVXtfzbaeuFrPxKEl5ASHBvcL0zCP6rMzHJpv_FOKda47soESMsx5TxvJcWW2kZfIzB2MMaBOUGutxDlxvocge9n7v6feNhak-5F9xtBXVrfWjUtw9Oy6TWzgcbVFvWUeb_7_gBYMeQ4w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747326783</pqid></control><display><type>article</type><title>Voltage gated sodium channels as drug discovery targets</title><source>PubMed Central</source><creator>Bagal, Sharan K ; Marron, Brian E ; Owen, Robert M ; Storer, R Ian ; Swain, Nigel A</creator><creatorcontrib>Bagal, Sharan K ; Marron, Brian E ; Owen, Robert M ; Storer, R Ian ; Swain, Nigel A</creatorcontrib><description>Voltage-gated sodium (Na V ) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of Na V s has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.</description><identifier>ISSN: 1933-6950</identifier><identifier>EISSN: 1933-6969</identifier><identifier>DOI: 10.1080/19336950.2015.1079674</identifier><identifier>PMID: 26646477</identifier><language>eng</language><publisher>United States: Taylor &amp; Francis Group, LLC</publisher><subject>Amino Acid Sequence ; Analgesics - chemistry ; Analgesics - pharmacology ; Animals ; Anti-Arrhythmia Agents - chemistry ; Anti-Arrhythmia Agents - pharmacology ; Anticonvulsants - chemistry ; Anticonvulsants - pharmacology ; Drug Discovery - methods ; Humans ; Molecular Sequence Data ; Review ; Sodium Channel Blockers - chemistry ; Sodium Channel Blockers - pharmacology ; sodium channel drugs ; sodium channel structure ; sodium channel toxins ; Voltage-Gated Sodium Channels - metabolism ; voltage-gated sodium channels Electrophysiology screening</subject><ispartof>Channels (Austin, Tex.), 2015-11, Vol.9 (6), p.360-366</ispartof><rights>2015 The Author(s). Published with license by Taylor &amp; Francis Group, LLC © Sharan K Bagal, Brian E Marron, Robert M Owen, R Ian Storer, and Nigel A Swain 2015</rights><rights>2015 The Author(s). Published with license by Taylor &amp; Francis Group, LLC © Sharan K Bagal, Brian E Marron, Robert M Owen, R Ian Storer, and Nigel A Swain 2015 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c468t-11be26f9d27707a195014f4884487fd474e029d5ecd7f8175075b414d4cfa9393</citedby><cites>FETCH-LOGICAL-c468t-11be26f9d27707a195014f4884487fd474e029d5ecd7f8175075b414d4cfa9393</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850042/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850042/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26646477$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bagal, Sharan K</creatorcontrib><creatorcontrib>Marron, Brian E</creatorcontrib><creatorcontrib>Owen, Robert M</creatorcontrib><creatorcontrib>Storer, R Ian</creatorcontrib><creatorcontrib>Swain, Nigel A</creatorcontrib><title>Voltage gated sodium channels as drug discovery targets</title><title>Channels (Austin, Tex.)</title><addtitle>Channels (Austin)</addtitle><description>Voltage-gated sodium (Na V ) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of Na V s has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.</description><subject>Amino Acid Sequence</subject><subject>Analgesics - chemistry</subject><subject>Analgesics - pharmacology</subject><subject>Animals</subject><subject>Anti-Arrhythmia Agents - chemistry</subject><subject>Anti-Arrhythmia Agents - pharmacology</subject><subject>Anticonvulsants - chemistry</subject><subject>Anticonvulsants - pharmacology</subject><subject>Drug Discovery - methods</subject><subject>Humans</subject><subject>Molecular Sequence Data</subject><subject>Review</subject><subject>Sodium Channel Blockers - chemistry</subject><subject>Sodium Channel Blockers - pharmacology</subject><subject>sodium channel drugs</subject><subject>sodium channel structure</subject><subject>sodium channel toxins</subject><subject>Voltage-Gated Sodium Channels - metabolism</subject><subject>voltage-gated sodium channels Electrophysiology screening</subject><issn>1933-6950</issn><issn>1933-6969</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>0YH</sourceid><recordid>eNp9kMtOwzAQRS0EoqXwCaAs2bTYjuPHBoEqXlIlNsDWcmM7DXLiYjtF_XtS9SHYsJrRzJ07MweASwQnCHJ4g0SeU1HACYao6EtMUEaOwHBTH1NBxfEhL-AAnMX4CSHNMUKnYIApJZQwNgTsw7ukKpNVKhmdRa_rrsnKhWpb42KmYqZDV2W6jqVfmbDOkgqVSfEcnFjlornYxRF4f3x4mz6PZ69PL9P72bgklKcxQnODqRUaMwaZQv0tiFjCOSGcWU0YMRALXZhSM8sRKyAr5gQRTUqrRC7yEbjd-i67eWN0adoUlJPLUDcqrKVXtfzbaeuFrPxKEl5ASHBvcL0zCP6rMzHJpv_FOKda47soESMsx5TxvJcWW2kZfIzB2MMaBOUGutxDlxvocge9n7v6feNhak-5F9xtBXVrfWjUtw9Oy6TWzgcbVFvWUeb_7_gBYMeQ4w</recordid><startdate>20151102</startdate><enddate>20151102</enddate><creator>Bagal, Sharan K</creator><creator>Marron, Brian E</creator><creator>Owen, Robert M</creator><creator>Storer, R Ian</creator><creator>Swain, Nigel A</creator><general>Taylor &amp; Francis Group, LLC</general><scope>0YH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20151102</creationdate><title>Voltage gated sodium channels as drug discovery targets</title><author>Bagal, Sharan K ; Marron, Brian E ; Owen, Robert M ; Storer, R Ian ; Swain, Nigel A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c468t-11be26f9d27707a195014f4884487fd474e029d5ecd7f8175075b414d4cfa9393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Analgesics - chemistry</topic><topic>Analgesics - pharmacology</topic><topic>Animals</topic><topic>Anti-Arrhythmia Agents - chemistry</topic><topic>Anti-Arrhythmia Agents - pharmacology</topic><topic>Anticonvulsants - chemistry</topic><topic>Anticonvulsants - pharmacology</topic><topic>Drug Discovery - methods</topic><topic>Humans</topic><topic>Molecular Sequence Data</topic><topic>Review</topic><topic>Sodium Channel Blockers - chemistry</topic><topic>Sodium Channel Blockers - pharmacology</topic><topic>sodium channel drugs</topic><topic>sodium channel structure</topic><topic>sodium channel toxins</topic><topic>Voltage-Gated Sodium Channels - metabolism</topic><topic>voltage-gated sodium channels Electrophysiology screening</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bagal, Sharan K</creatorcontrib><creatorcontrib>Marron, Brian E</creatorcontrib><creatorcontrib>Owen, Robert M</creatorcontrib><creatorcontrib>Storer, R Ian</creatorcontrib><creatorcontrib>Swain, Nigel A</creatorcontrib><collection>Taylor &amp; Francis Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Channels (Austin, Tex.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bagal, Sharan K</au><au>Marron, Brian E</au><au>Owen, Robert M</au><au>Storer, R Ian</au><au>Swain, Nigel A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Voltage gated sodium channels as drug discovery targets</atitle><jtitle>Channels (Austin, Tex.)</jtitle><addtitle>Channels (Austin)</addtitle><date>2015-11-02</date><risdate>2015</risdate><volume>9</volume><issue>6</issue><spage>360</spage><epage>366</epage><pages>360-366</pages><issn>1933-6950</issn><eissn>1933-6969</eissn><abstract>Voltage-gated sodium (Na V ) channels are a family of transmembrane ion channel proteins. They function by forming a gated, water-filled pore to help establish and control cell membrane potential via control of the flow of ions between the intracellular and the extracellular environments. Blockade of Na V s has been successfully accomplished in the clinic to enable control of pathological firing patterns that occur in a diverse range of conditions such as chronic pain, epilepsy, and cardiac arrhythmias. First generation sodium channel modulator drugs, despite low inherent subtype selectivity, preferentially act on over-excited cells which reduces undesirable side effects in the clinic. However, the limited therapeutic indices observed with the first generation demanded a new generation of sodium channel inhibitors. The structure, function and the state of the art in sodium channel modulator drug discovery are discussed in this chapter.</abstract><cop>United States</cop><pub>Taylor &amp; Francis Group, LLC</pub><pmid>26646477</pmid><doi>10.1080/19336950.2015.1079674</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1933-6950
ispartof Channels (Austin, Tex.), 2015-11, Vol.9 (6), p.360-366
issn 1933-6950
1933-6969
language eng
recordid cdi_proquest_miscellaneous_1747326783
source PubMed Central
subjects Amino Acid Sequence
Analgesics - chemistry
Analgesics - pharmacology
Animals
Anti-Arrhythmia Agents - chemistry
Anti-Arrhythmia Agents - pharmacology
Anticonvulsants - chemistry
Anticonvulsants - pharmacology
Drug Discovery - methods
Humans
Molecular Sequence Data
Review
Sodium Channel Blockers - chemistry
Sodium Channel Blockers - pharmacology
sodium channel drugs
sodium channel structure
sodium channel toxins
Voltage-Gated Sodium Channels - metabolism
voltage-gated sodium channels Electrophysiology screening
title Voltage gated sodium channels as drug discovery targets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T23%3A19%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Voltage%20gated%20sodium%20channels%20as%20drug%20discovery%20targets&rft.jtitle=Channels%20(Austin,%20Tex.)&rft.au=Bagal,%20Sharan%20K&rft.date=2015-11-02&rft.volume=9&rft.issue=6&rft.spage=360&rft.epage=366&rft.pages=360-366&rft.issn=1933-6950&rft.eissn=1933-6969&rft_id=info:doi/10.1080/19336950.2015.1079674&rft_dat=%3Cproquest_pubme%3E1747326783%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c468t-11be26f9d27707a195014f4884487fd474e029d5ecd7f8175075b414d4cfa9393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1747326783&rft_id=info:pmid/26646477&rfr_iscdi=true