Loading…
Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models
We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a re...
Saved in:
Published in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-09, Vol.92 (3), p.032133-032133, Article 032133 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3 |
container_end_page | 032133 |
container_issue | 3 |
container_start_page | 032133 |
container_title | Physical review. E, Statistical, nonlinear, and soft matter physics |
container_volume | 92 |
creator | Teomy, Eial Shokef, Yair |
description | We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1. |
doi_str_mv | 10.1103/PhysRevE.92.032133 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747326991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747326991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EoqXwAyyQl2xSYr9MXqKqDFIlUAVry8OLGuokxU6A_D2pWli9QffcxSHkmsVzxmK4e90MYY1fy7ng8xg4AzghU5amccQhz073O4gI8jSdkIsQPuIxBEVyTiY8S7I0SfmUbNboVFe1DdXYfSM2NHS-N13vkbYl1a41W7TUuD506ANVjaV-RH4OkB0aVVcm0Kqh26rBrjLKuYGathl71PixtG4tunBJzkrlAl4d54y8PyzfFk_R6uXxeXG_igwkeRflKVqTJWi1YgJKKFWhhRCgxjsTpmCQiDJjjCFjSgld2kKnOXJQLNelUDAjt4fenW8_ewydrKtg0DnVYNsHyfIkB54JwcYoP0SNb0PwWMqdr2rlB8liuTcs_wxLweXB8AjdHPt7XaP9R_6Uwi-j1HvZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747326991</pqid></control><display><type>article</type><title>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Teomy, Eial ; Shokef, Yair</creator><creatorcontrib>Teomy, Eial ; Shokef, Yair</creatorcontrib><description>We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.032133</identifier><identifier>PMID: 26465452</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-09, Vol.92 (3), p.032133-032133, Article 032133</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</citedby><cites>FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26465452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teomy, Eial</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><title>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EoqXwAyyQl2xSYr9MXqKqDFIlUAVry8OLGuokxU6A_D2pWli9QffcxSHkmsVzxmK4e90MYY1fy7ng8xg4AzghU5amccQhz073O4gI8jSdkIsQPuIxBEVyTiY8S7I0SfmUbNboVFe1DdXYfSM2NHS-N13vkbYl1a41W7TUuD506ANVjaV-RH4OkB0aVVcm0Kqh26rBrjLKuYGathl71PixtG4tunBJzkrlAl4d54y8PyzfFk_R6uXxeXG_igwkeRflKVqTJWi1YgJKKFWhhRCgxjsTpmCQiDJjjCFjSgld2kKnOXJQLNelUDAjt4fenW8_ewydrKtg0DnVYNsHyfIkB54JwcYoP0SNb0PwWMqdr2rlB8liuTcs_wxLweXB8AjdHPt7XaP9R_6Uwi-j1HvZ</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Teomy, Eial</creator><creator>Shokef, Yair</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</title><author>Teomy, Eial ; Shokef, Yair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Teomy, Eial</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teomy, Eial</au><au>Shokef, Yair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-09</date><risdate>2015</risdate><volume>92</volume><issue>3</issue><spage>032133</spage><epage>032133</epage><pages>032133-032133</pages><artnum>032133</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.</abstract><cop>United States</cop><pmid>26465452</pmid><doi>10.1103/PhysRevE.92.032133</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1539-3755 |
ispartof | Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-09, Vol.92 (3), p.032133-032133, Article 032133 |
issn | 1539-3755 1550-2376 |
language | eng |
recordid | cdi_proquest_miscellaneous_1747326991 |
source | American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list) |
title | Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20between%20structure%20of%20blocked%20clusters%20and%20relaxation%20dynamics%20in%20kinetically%20constrained%20models&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Teomy,%20Eial&rft.date=2015-09&rft.volume=92&rft.issue=3&rft.spage=032133&rft.epage=032133&rft.pages=032133-032133&rft.artnum=032133&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.032133&rft_dat=%3Cproquest_cross%3E1747326991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1747326991&rft_id=info:pmid/26465452&rfr_iscdi=true |