Loading…

Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models

We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a re...

Full description

Saved in:
Bibliographic Details
Published in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2015-09, Vol.92 (3), p.032133-032133, Article 032133
Main Authors: Teomy, Eial, Shokef, Yair
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3
cites cdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3
container_end_page 032133
container_issue 3
container_start_page 032133
container_title Physical review. E, Statistical, nonlinear, and soft matter physics
container_volume 92
creator Teomy, Eial
Shokef, Yair
description We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.
doi_str_mv 10.1103/PhysRevE.92.032133
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1747326991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1747326991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</originalsourceid><addsrcrecordid>eNo9kMlOwzAURS0EoqXwAyyQl2xSYr9MXqKqDFIlUAVry8OLGuokxU6A_D2pWli9QffcxSHkmsVzxmK4e90MYY1fy7ng8xg4AzghU5amccQhz073O4gI8jSdkIsQPuIxBEVyTiY8S7I0SfmUbNboVFe1DdXYfSM2NHS-N13vkbYl1a41W7TUuD506ANVjaV-RH4OkB0aVVcm0Kqh26rBrjLKuYGathl71PixtG4tunBJzkrlAl4d54y8PyzfFk_R6uXxeXG_igwkeRflKVqTJWi1YgJKKFWhhRCgxjsTpmCQiDJjjCFjSgld2kKnOXJQLNelUDAjt4fenW8_ewydrKtg0DnVYNsHyfIkB54JwcYoP0SNb0PwWMqdr2rlB8liuTcs_wxLweXB8AjdHPt7XaP9R_6Uwi-j1HvZ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1747326991</pqid></control><display><type>article</type><title>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</title><source>American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)</source><creator>Teomy, Eial ; Shokef, Yair</creator><creatorcontrib>Teomy, Eial ; Shokef, Yair</creatorcontrib><description>We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.</description><identifier>ISSN: 1539-3755</identifier><identifier>EISSN: 1550-2376</identifier><identifier>DOI: 10.1103/PhysRevE.92.032133</identifier><identifier>PMID: 26465452</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-09, Vol.92 (3), p.032133-032133, Article 032133</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</citedby><cites>FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26465452$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Teomy, Eial</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><title>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</title><title>Physical review. E, Statistical, nonlinear, and soft matter physics</title><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><description>We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.</description><issn>1539-3755</issn><issn>1550-2376</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9kMlOwzAURS0EoqXwAyyQl2xSYr9MXqKqDFIlUAVry8OLGuokxU6A_D2pWli9QffcxSHkmsVzxmK4e90MYY1fy7ng8xg4AzghU5amccQhz073O4gI8jSdkIsQPuIxBEVyTiY8S7I0SfmUbNboVFe1DdXYfSM2NHS-N13vkbYl1a41W7TUuD506ANVjaV-RH4OkB0aVVcm0Kqh26rBrjLKuYGathl71PixtG4tunBJzkrlAl4d54y8PyzfFk_R6uXxeXG_igwkeRflKVqTJWi1YgJKKFWhhRCgxjsTpmCQiDJjjCFjSgld2kKnOXJQLNelUDAjt4fenW8_ewydrKtg0DnVYNsHyfIkB54JwcYoP0SNb0PwWMqdr2rlB8liuTcs_wxLweXB8AjdHPt7XaP9R_6Uwi-j1HvZ</recordid><startdate>201509</startdate><enddate>201509</enddate><creator>Teomy, Eial</creator><creator>Shokef, Yair</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201509</creationdate><title>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</title><author>Teomy, Eial ; Shokef, Yair</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Teomy, Eial</creatorcontrib><creatorcontrib>Shokef, Yair</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Teomy, Eial</au><au>Shokef, Yair</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models</atitle><jtitle>Physical review. E, Statistical, nonlinear, and soft matter physics</jtitle><addtitle>Phys Rev E Stat Nonlin Soft Matter Phys</addtitle><date>2015-09</date><risdate>2015</risdate><volume>92</volume><issue>3</issue><spage>032133</spage><epage>032133</epage><pages>032133-032133</pages><artnum>032133</artnum><issn>1539-3755</issn><eissn>1550-2376</eissn><abstract>We investigate the relation between the cooperative length and relaxation time, represented, respectively, by the culling time and the persistence time, in the Fredrickson-Andersen, Kob-Andersen, and spiral kinetically constrained models. By mapping the dynamics to diffusion of defects, we find a relation between the persistence time, τ_{p}, which is the time until a particle moves for the first time, and the culling time, τ_{c}, which is the minimal number of particles that need to move before a specific particle can move, τ_{p}=τ_{c}^{γ}, where γ is model- and dimension-dependent. We also show that the persistence function in the Kob-Andersen and Fredrickson-Andersen models decays subexponentially in time, P(t)=exp[-(t/τ)^{β}], but unlike previous works, we find that the exponent β appears to decay to 0 as the particle density approaches 1.</abstract><cop>United States</cop><pmid>26465452</pmid><doi>10.1103/PhysRevE.92.032133</doi><tpages>1</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1539-3755
ispartof Physical review. E, Statistical, nonlinear, and soft matter physics, 2015-09, Vol.92 (3), p.032133-032133, Article 032133
issn 1539-3755
1550-2376
language eng
recordid cdi_proquest_miscellaneous_1747326991
source American Physical Society:Jisc Collections:APS Read and Publish 2023-2025 (reading list)
title Relation between structure of blocked clusters and relaxation dynamics in kinetically constrained models
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T05%3A04%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Relation%20between%20structure%20of%20blocked%20clusters%20and%20relaxation%20dynamics%20in%20kinetically%20constrained%20models&rft.jtitle=Physical%20review.%20E,%20Statistical,%20nonlinear,%20and%20soft%20matter%20physics&rft.au=Teomy,%20Eial&rft.date=2015-09&rft.volume=92&rft.issue=3&rft.spage=032133&rft.epage=032133&rft.pages=032133-032133&rft.artnum=032133&rft.issn=1539-3755&rft.eissn=1550-2376&rft_id=info:doi/10.1103/PhysRevE.92.032133&rft_dat=%3Cproquest_cross%3E1747326991%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c347t-75edc64edba193f3fa8b9993aba169c81349f6111e11aa9bfd8b57e23a17bf9a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1747326991&rft_id=info:pmid/26465452&rfr_iscdi=true