Loading…

Spruce Budworm (Lepidoptera: Tortricidae) Oral Secretions II: Chemistry

As sessile organisms, plants have evolved different methods to defend against attacks and have adapted their defense measures to discriminate between mechanical damage and herbivory by insects. One of the ways that plant defenses are triggered is via elicitors from insect oral secretions (OS). In th...

Full description

Saved in:
Bibliographic Details
Published in:Environmental entomology 2015-12, Vol.44 (6), p.1531-1543
Main Authors: Leclair, Gaëtan, Williams, Martin, Silk, Peter, Eveleigh, Eldon, Mayo, Peter, Brophy, Matt, Francis, Brittany
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:As sessile organisms, plants have evolved different methods to defend against attacks and have adapted their defense measures to discriminate between mechanical damage and herbivory by insects. One of the ways that plant defenses are triggered is via elicitors from insect oral secretions (OS). In this study, we investigated the ability of second-instar (L2) spruce budworm [SBW; Choristoneura fumiferana (Clemens)] to alter the volatile organic compounds (VOCs) of four conifer species [Abies balsamea (L.) Mill., Picea mariana (Miller) B.S.P., Picea glauca (Moench) Voss, Picea rubens (Sargent)] and found that the emission profiles from all host trees were drastically changed after herbivory. We then investigated whether some of the main elicitors (fatty acid conjugates [FACs], β-glucosidase, and glucose oxidase) studied were present in SBW OS. FACs (glutamine and glutamic acid) based on linolenic, linoleic, oleic, and stearic acids were all observed in varying relative quantities. Hydroxylated FACs, such as volicitin, were not observed. Enzyme activity for β-glucosidase was also measured and found present in SBW OS, whereas glucose oxidase activity was not found in the SBW labial glands. These results demonstrate that SBW L2 larvae have the ability to induce VOC emissions upon herbivory and that SBW OS contain potential elicitors to induce these defensive responses. These data will be useful to further evaluate whether these elicitors can separately induce the production of specific VOCs and to investigate whether and how these emissions benefit the plant.
ISSN:0046-225X
1938-2936
DOI:10.1093/ee/nvv149