Loading…
Circadian rhythms: new functions for old clock genes
The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in Drosophila, Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However...
Saved in:
Published in: | Trends in genetics 2000-03, Vol.16 (3), p.135-142 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 142 |
container_issue | 3 |
container_start_page | 135 |
container_title | Trends in genetics |
container_volume | 16 |
creator | Lakin-Thomas, Patricia L. |
description | The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in
Drosophila,
Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our
a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes. |
doi_str_mv | 10.1016/S0168-9525(99)01945-9 |
format | article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_17496589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952599019459</els_id><sourcerecordid>17496589</sourcerecordid><originalsourceid>FETCH-LOGICAL-e347t-a1a0b0dc4a4be3593e664ae23b6329be739197406af36eda3c1f4a3182b6d2873</originalsourceid><addsrcrecordid>eNpF0ctOwzAQBVAvQFAKnwBkgRAsAn4nZoNQxUuqxKKwtibOBAxpUuwU1L8nfQAbW7KOPLpzCTlk9IJRpi8n_ZGnRnF1Zsw5ZUaq1GyRwd_zLtmL8Z1SqjKhdsguozo3QqkBkSMfHJQemiS8Lbq3abxKGvxOqnnjOt82ManakLR1mbi6dR_JKzYY98l2BXXEg809JC93t8-jh3T8dP84uhmnKGTWpcCAFrR0EmSBQhmBWktALgotuCkwE4aZTFINldBYgnCskiBYzgtd8jwTQ3K6_ncW2s85xs5OfXRY19BgO4-WZdJo1ScZkqMNnBdTLO0s-CmEhf3N2YOTDYDooK4CNM7Hf8dzSely4PGaVdBaeA09eZlwygTlRmguaC-u1wL73F8eg43OY-Ow9AFdZ8vW91Ptsha7qsUu92-NsatarBE_LLB8eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17496589</pqid></control><display><type>article</type><title>Circadian rhythms: new functions for old clock genes</title><source>Elsevier</source><creator>Lakin-Thomas, Patricia L.</creator><creatorcontrib>Lakin-Thomas, Patricia L.</creatorcontrib><description>The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in
Drosophila,
Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our
a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/S0168-9525(99)01945-9</identifier><identifier>PMID: 10689355</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetabularia - genetics ; Animals ; Biological and medical sciences ; Cell physiology ; Circadian rhythm ; Circadian Rhythm - genetics ; Clock ; Cyanobacteria - genetics ; Cyanophyta ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Feedback ; Fundamental and applied biological sciences. Psychology ; gene expression ; Gene Expression Regulation ; Gene Expression Regulation, Fungal ; genes ; Genes, Bacterial ; Genes, Fungal ; Genes, Plant ; genetic regulation ; Humans ; Mammals - genetics ; Mice ; Miscellaneous ; Models, Biological ; Models, Genetic ; Molecular and cellular biology ; Mutagenesis ; Neurospora ; Neurospora crassa ; Neurospora crassa - genetics ; Phototransduction ; Protein Biosynthesis ; Protein Structure, Tertiary - genetics ; transcription (genetics) ; Transcription, Genetic ; translation</subject><ispartof>Trends in genetics, 2000-03, Vol.16 (3), p.135-142</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1284007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10689355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakin-Thomas, Patricia L.</creatorcontrib><title>Circadian rhythms: new functions for old clock genes</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in
Drosophila,
Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our
a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes.</description><subject>Acetabularia - genetics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Clock</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanophyta</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Feedback</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>genes</subject><subject>Genes, Bacterial</subject><subject>Genes, Fungal</subject><subject>Genes, Plant</subject><subject>genetic regulation</subject><subject>Humans</subject><subject>Mammals - genetics</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Mutagenesis</subject><subject>Neurospora</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - genetics</subject><subject>Phototransduction</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>transcription (genetics)</subject><subject>Transcription, Genetic</subject><subject>translation</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpF0ctOwzAQBVAvQFAKnwBkgRAsAn4nZoNQxUuqxKKwtibOBAxpUuwU1L8nfQAbW7KOPLpzCTlk9IJRpi8n_ZGnRnF1Zsw5ZUaq1GyRwd_zLtmL8Z1SqjKhdsguozo3QqkBkSMfHJQemiS8Lbq3abxKGvxOqnnjOt82ManakLR1mbi6dR_JKzYY98l2BXXEg809JC93t8-jh3T8dP84uhmnKGTWpcCAFrR0EmSBQhmBWktALgotuCkwE4aZTFINldBYgnCskiBYzgtd8jwTQ3K6_ncW2s85xs5OfXRY19BgO4-WZdJo1ScZkqMNnBdTLO0s-CmEhf3N2YOTDYDooK4CNM7Hf8dzSely4PGaVdBaeA09eZlwygTlRmguaC-u1wL73F8eg43OY-Ow9AFdZ8vW91Ptsha7qsUu92-NsatarBE_LLB8eQ</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Lakin-Thomas, Patricia L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20000301</creationdate><title>Circadian rhythms: new functions for old clock genes</title><author>Lakin-Thomas, Patricia L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e347t-a1a0b0dc4a4be3593e664ae23b6329be739197406af36eda3c1f4a3182b6d2873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acetabularia - genetics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Clock</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanophyta</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Feedback</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>genes</topic><topic>Genes, Bacterial</topic><topic>Genes, Fungal</topic><topic>Genes, Plant</topic><topic>genetic regulation</topic><topic>Humans</topic><topic>Mammals - genetics</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Mutagenesis</topic><topic>Neurospora</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - genetics</topic><topic>Phototransduction</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>transcription (genetics)</topic><topic>Transcription, Genetic</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakin-Thomas, Patricia L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakin-Thomas, Patricia L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circadian rhythms: new functions for old clock genes</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2000-03-01</date><risdate>2000</risdate><volume>16</volume><issue>3</issue><spage>135</spage><epage>142</epage><pages>135-142</pages><issn>0168-9525</issn><abstract>The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in
Drosophila,
Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our
a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10689355</pmid><doi>10.1016/S0168-9525(99)01945-9</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-9525 |
ispartof | Trends in genetics, 2000-03, Vol.16 (3), p.135-142 |
issn | 0168-9525 |
language | eng |
recordid | cdi_proquest_miscellaneous_17496589 |
source | Elsevier |
subjects | Acetabularia - genetics Animals Biological and medical sciences Cell physiology Circadian rhythm Circadian Rhythm - genetics Clock Cyanobacteria - genetics Cyanophyta Drosophila Drosophila melanogaster Drosophila melanogaster - genetics Feedback Fundamental and applied biological sciences. Psychology gene expression Gene Expression Regulation Gene Expression Regulation, Fungal genes Genes, Bacterial Genes, Fungal Genes, Plant genetic regulation Humans Mammals - genetics Mice Miscellaneous Models, Biological Models, Genetic Molecular and cellular biology Mutagenesis Neurospora Neurospora crassa Neurospora crassa - genetics Phototransduction Protein Biosynthesis Protein Structure, Tertiary - genetics transcription (genetics) Transcription, Genetic translation |
title | Circadian rhythms: new functions for old clock genes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circadian%20rhythms:%20new%20functions%20for%20old%20clock%20genes&rft.jtitle=Trends%20in%20genetics&rft.au=Lakin-Thomas,%20Patricia%20L.&rft.date=2000-03-01&rft.volume=16&rft.issue=3&rft.spage=135&rft.epage=142&rft.pages=135-142&rft.issn=0168-9525&rft_id=info:doi/10.1016/S0168-9525(99)01945-9&rft_dat=%3Cproquest_pubme%3E17496589%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e347t-a1a0b0dc4a4be3593e664ae23b6329be739197406af36eda3c1f4a3182b6d2873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17496589&rft_id=info:pmid/10689355&rfr_iscdi=true |