Loading…

Circadian rhythms: new functions for old clock genes

The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in Drosophila, Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However...

Full description

Saved in:
Bibliographic Details
Published in:Trends in genetics 2000-03, Vol.16 (3), p.135-142
Main Author: Lakin-Thomas, Patricia L.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 142
container_issue 3
container_start_page 135
container_title Trends in genetics
container_volume 16
creator Lakin-Thomas, Patricia L.
description The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in Drosophila, Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes.
doi_str_mv 10.1016/S0168-9525(99)01945-9
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_17496589</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168952599019459</els_id><sourcerecordid>17496589</sourcerecordid><originalsourceid>FETCH-LOGICAL-e347t-a1a0b0dc4a4be3593e664ae23b6329be739197406af36eda3c1f4a3182b6d2873</originalsourceid><addsrcrecordid>eNpF0ctOwzAQBVAvQFAKnwBkgRAsAn4nZoNQxUuqxKKwtibOBAxpUuwU1L8nfQAbW7KOPLpzCTlk9IJRpi8n_ZGnRnF1Zsw5ZUaq1GyRwd_zLtmL8Z1SqjKhdsguozo3QqkBkSMfHJQemiS8Lbq3abxKGvxOqnnjOt82ManakLR1mbi6dR_JKzYY98l2BXXEg809JC93t8-jh3T8dP84uhmnKGTWpcCAFrR0EmSBQhmBWktALgotuCkwE4aZTFINldBYgnCskiBYzgtd8jwTQ3K6_ncW2s85xs5OfXRY19BgO4-WZdJo1ScZkqMNnBdTLO0s-CmEhf3N2YOTDYDooK4CNM7Hf8dzSely4PGaVdBaeA09eZlwygTlRmguaC-u1wL73F8eg43OY-Ow9AFdZ8vW91Ptsha7qsUu92-NsatarBE_LLB8eQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>17496589</pqid></control><display><type>article</type><title>Circadian rhythms: new functions for old clock genes</title><source>Elsevier</source><creator>Lakin-Thomas, Patricia L.</creator><creatorcontrib>Lakin-Thomas, Patricia L.</creatorcontrib><description>The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in Drosophila, Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes.</description><identifier>ISSN: 0168-9525</identifier><identifier>DOI: 10.1016/S0168-9525(99)01945-9</identifier><identifier>PMID: 10689355</identifier><language>eng</language><publisher>Oxford: Elsevier Ltd</publisher><subject>Acetabularia - genetics ; Animals ; Biological and medical sciences ; Cell physiology ; Circadian rhythm ; Circadian Rhythm - genetics ; Clock ; Cyanobacteria - genetics ; Cyanophyta ; Drosophila ; Drosophila melanogaster ; Drosophila melanogaster - genetics ; Feedback ; Fundamental and applied biological sciences. Psychology ; gene expression ; Gene Expression Regulation ; Gene Expression Regulation, Fungal ; genes ; Genes, Bacterial ; Genes, Fungal ; Genes, Plant ; genetic regulation ; Humans ; Mammals - genetics ; Mice ; Miscellaneous ; Models, Biological ; Models, Genetic ; Molecular and cellular biology ; Mutagenesis ; Neurospora ; Neurospora crassa ; Neurospora crassa - genetics ; Phototransduction ; Protein Biosynthesis ; Protein Structure, Tertiary - genetics ; transcription (genetics) ; Transcription, Genetic ; translation</subject><ispartof>Trends in genetics, 2000-03, Vol.16 (3), p.135-142</ispartof><rights>2000 Elsevier Science Ltd</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1284007$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10689355$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lakin-Thomas, Patricia L.</creatorcontrib><title>Circadian rhythms: new functions for old clock genes</title><title>Trends in genetics</title><addtitle>Trends Genet</addtitle><description>The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in Drosophila, Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes.</description><subject>Acetabularia - genetics</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Cell physiology</subject><subject>Circadian rhythm</subject><subject>Circadian Rhythm - genetics</subject><subject>Clock</subject><subject>Cyanobacteria - genetics</subject><subject>Cyanophyta</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Drosophila melanogaster - genetics</subject><subject>Feedback</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>gene expression</subject><subject>Gene Expression Regulation</subject><subject>Gene Expression Regulation, Fungal</subject><subject>genes</subject><subject>Genes, Bacterial</subject><subject>Genes, Fungal</subject><subject>Genes, Plant</subject><subject>genetic regulation</subject><subject>Humans</subject><subject>Mammals - genetics</subject><subject>Mice</subject><subject>Miscellaneous</subject><subject>Models, Biological</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Mutagenesis</subject><subject>Neurospora</subject><subject>Neurospora crassa</subject><subject>Neurospora crassa - genetics</subject><subject>Phototransduction</subject><subject>Protein Biosynthesis</subject><subject>Protein Structure, Tertiary - genetics</subject><subject>transcription (genetics)</subject><subject>Transcription, Genetic</subject><subject>translation</subject><issn>0168-9525</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2000</creationdate><recordtype>article</recordtype><recordid>eNpF0ctOwzAQBVAvQFAKnwBkgRAsAn4nZoNQxUuqxKKwtibOBAxpUuwU1L8nfQAbW7KOPLpzCTlk9IJRpi8n_ZGnRnF1Zsw5ZUaq1GyRwd_zLtmL8Z1SqjKhdsguozo3QqkBkSMfHJQemiS8Lbq3abxKGvxOqnnjOt82ManakLR1mbi6dR_JKzYY98l2BXXEg809JC93t8-jh3T8dP84uhmnKGTWpcCAFrR0EmSBQhmBWktALgotuCkwE4aZTFINldBYgnCskiBYzgtd8jwTQ3K6_ncW2s85xs5OfXRY19BgO4-WZdJo1ScZkqMNnBdTLO0s-CmEhf3N2YOTDYDooK4CNM7Hf8dzSely4PGaVdBaeA09eZlwygTlRmguaC-u1wL73F8eg43OY-Ow9AFdZ8vW91Ptsha7qsUu92-NsatarBE_LLB8eQ</recordid><startdate>20000301</startdate><enddate>20000301</enddate><creator>Lakin-Thomas, Patricia L.</creator><general>Elsevier Ltd</general><general>Elsevier Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20000301</creationdate><title>Circadian rhythms: new functions for old clock genes</title><author>Lakin-Thomas, Patricia L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-e347t-a1a0b0dc4a4be3593e664ae23b6329be739197406af36eda3c1f4a3182b6d2873</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2000</creationdate><topic>Acetabularia - genetics</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Cell physiology</topic><topic>Circadian rhythm</topic><topic>Circadian Rhythm - genetics</topic><topic>Clock</topic><topic>Cyanobacteria - genetics</topic><topic>Cyanophyta</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Drosophila melanogaster - genetics</topic><topic>Feedback</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>gene expression</topic><topic>Gene Expression Regulation</topic><topic>Gene Expression Regulation, Fungal</topic><topic>genes</topic><topic>Genes, Bacterial</topic><topic>Genes, Fungal</topic><topic>Genes, Plant</topic><topic>genetic regulation</topic><topic>Humans</topic><topic>Mammals - genetics</topic><topic>Mice</topic><topic>Miscellaneous</topic><topic>Models, Biological</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Mutagenesis</topic><topic>Neurospora</topic><topic>Neurospora crassa</topic><topic>Neurospora crassa - genetics</topic><topic>Phototransduction</topic><topic>Protein Biosynthesis</topic><topic>Protein Structure, Tertiary - genetics</topic><topic>transcription (genetics)</topic><topic>Transcription, Genetic</topic><topic>translation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lakin-Thomas, Patricia L.</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Trends in genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lakin-Thomas, Patricia L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Circadian rhythms: new functions for old clock genes</atitle><jtitle>Trends in genetics</jtitle><addtitle>Trends Genet</addtitle><date>2000-03-01</date><risdate>2000</risdate><volume>16</volume><issue>3</issue><spage>135</spage><epage>142</epage><pages>135-142</pages><issn>0168-9525</issn><abstract>The mechanisms of circadian clocks, which time daily events, are being investigated by characterizing ‘clock genes’ that affect daily rhythms. The core of the clock mechanism in Drosophila, Neurospora, mammals and cyanobacteria is described by a transcription–translation feedback-loop model. However, problems with this model could indicate that it is time to look at the functions of these genes in a different light. Our a priori assumptions about the nature of circadian clocks might have restricted our search for new mutants in ways that prevent us from finding important clock genes.</abstract><cop>Oxford</cop><pub>Elsevier Ltd</pub><pmid>10689355</pmid><doi>10.1016/S0168-9525(99)01945-9</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0168-9525
ispartof Trends in genetics, 2000-03, Vol.16 (3), p.135-142
issn 0168-9525
language eng
recordid cdi_proquest_miscellaneous_17496589
source Elsevier
subjects Acetabularia - genetics
Animals
Biological and medical sciences
Cell physiology
Circadian rhythm
Circadian Rhythm - genetics
Clock
Cyanobacteria - genetics
Cyanophyta
Drosophila
Drosophila melanogaster
Drosophila melanogaster - genetics
Feedback
Fundamental and applied biological sciences. Psychology
gene expression
Gene Expression Regulation
Gene Expression Regulation, Fungal
genes
Genes, Bacterial
Genes, Fungal
Genes, Plant
genetic regulation
Humans
Mammals - genetics
Mice
Miscellaneous
Models, Biological
Models, Genetic
Molecular and cellular biology
Mutagenesis
Neurospora
Neurospora crassa
Neurospora crassa - genetics
Phototransduction
Protein Biosynthesis
Protein Structure, Tertiary - genetics
transcription (genetics)
Transcription, Genetic
translation
title Circadian rhythms: new functions for old clock genes
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T04%3A46%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Circadian%20rhythms:%20new%20functions%20for%20old%20clock%20genes&rft.jtitle=Trends%20in%20genetics&rft.au=Lakin-Thomas,%20Patricia%20L.&rft.date=2000-03-01&rft.volume=16&rft.issue=3&rft.spage=135&rft.epage=142&rft.pages=135-142&rft.issn=0168-9525&rft_id=info:doi/10.1016/S0168-9525(99)01945-9&rft_dat=%3Cproquest_pubme%3E17496589%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-e347t-a1a0b0dc4a4be3593e664ae23b6329be739197406af36eda3c1f4a3182b6d2873%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=17496589&rft_id=info:pmid/10689355&rfr_iscdi=true