Loading…

Cardiovascular and thermal effects of microwave irradiation at 1 and/or 10 GHz in anesthetized rats

Relatively large thermal gradients may exist during exposure of an animal to microwaves (MWs), particularly at high frequencies. Differences in thermal gradients within the body may lead to noticeable differences in the magnitude of cardiovascular changes resulting from MW exposure. This study compa...

Full description

Saved in:
Bibliographic Details
Published in:Bioelectromagnetics 2000-04, Vol.21 (3), p.159-166
Main Authors: Jauchem, James R., Ryan, Kathy L., Frei†, Melvin R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Relatively large thermal gradients may exist during exposure of an animal to microwaves (MWs), particularly at high frequencies. Differences in thermal gradients within the body may lead to noticeable differences in the magnitude of cardiovascular changes resulting from MW exposure. This study compares the thermal distribution and cardiovascular effects of exposure to a single MW frequency with effects of simultaneous exposure to two frequencies. Ketamine‐anesthetized male Sprague–Dawley rats (n = 58) were exposed individually to one of three conditions: 1‐GHz, 10‐GHz, or combined 1‐ and 10‐GHz MWs at an equivalent whole‐body specific absorption rate of 12 W/kg. The continuous‐wave irradiation was conducted under far‐field conditions with animals in E orientation (left lateral exposure, long axis parallel to the electric field) or in H orientation (left lateral exposure, long axis perpendicular to the electric field). Irradiation was started when colonic temperature was 37.5°C and was continued until lethal temperatures were attained. Colonic, tympanic, left and right subcutaneous, and tail temperatures, and arterial blood pressure, heart rate, and respiratory rate were continuously recorded. In both E and H orientations, survival time (i.e., time from colonic temperat ure of 37.5°C until death) was lowest in animals exposed at 1‐GHz, intermediate in those exposed at 1‐ and 10‐GHz combined, and greatest in the 10‐GHz group (most differences statistically significant). At all sites (with the exception of right subcutaneous), temperature values in the 1‐ and 10‐GHz combined group were between those of the single‐frequency exposure groups in both E and H orientations. During irradiation, arterial blood pressure initially increased and then decreased until death. Heart rate increased throughout the exposure period. The general, overall patterns of these changes were similar in all groups. The results indicate that no unusual physiological responses occur during multi‐frequency MW exposure, when compared with results of single‐frequency exposure. Bioelectromagnetics 21:159–166, 2000. Published 2000 Wiley‐Liss, Inc.
ISSN:0197-8462
1521-186X
DOI:10.1002/(SICI)1521-186X(200004)21:3<159::AID-BEM2>3.0.CO;2-#