Loading…
Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies
Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This s...
Saved in:
Published in: | Proceedings of the National Academy of Sciences - PNAS 2015-12, Vol.112 (50), p.15354-15359 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c398t-d24fa2485d1356ead34788861e17eee23ddbac75eab43f490f893eb6bf4ed25a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c398t-d24fa2485d1356ead34788861e17eee23ddbac75eab43f490f893eb6bf4ed25a3 |
container_end_page | 15359 |
container_issue | 50 |
container_start_page | 15354 |
container_title | Proceedings of the National Academy of Sciences - PNAS |
container_volume | 112 |
creator | Townsend, Sue Fennell, Brian J. Apgar, James R. Lambert, Matthew McDonnell, Barry Grant, Joanne Wade, Jason Franklin, Edward Foy, Niall Shúilleabháin, Deirdre Ní Fields, Conor Darmanin-Sheehan, Alfredo King, Amy Paulsen, Janet E. Hickling, Timothy P. Tchistiakova, Lioudmila Cunningham, Orla Finlay, William J. J. |
description | Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process. |
doi_str_mv | 10.1073/pnas.1510944112 |
format | article |
fullrecord | <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1749999790</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>26466600</jstor_id><sourcerecordid>26466600</sourcerecordid><originalsourceid>FETCH-LOGICAL-c398t-d24fa2485d1356ead34788861e17eee23ddbac75eab43f490f893eb6bf4ed25a3</originalsourceid><addsrcrecordid>eNpdkM1LwzAYh4Mobk7PniYDL1665fvjIszhFww8qOeQNunsaJvZtIL_vZmbc5pLAnneh9_7A-AcwTGCgkxWtQljxBBUlCKED0A_PlHCqYKHoA8hFomkmPbASQhLCKFiEh6DHuYcI4FlHwyn3aJydevs6KaoTfM5eu7S0BZt1xa-PgVHuSmDO9veA_B6d_sye0jmT_ePs-k8yYiSbWIxzQ2mkllEGHfGEiqklBw5JJxzmFibmkwwZ1JK8pgtl4q4lKc5dRYzQwbgeuNddWnlbBYDNabUq6aoYiTtTaH__tTFm174D025FDwWMQBXW0Hj3zsXWl0VIXNlaWrnu6CRoCoeoWBEL_-hS981dVwvUgxhpOg3NdlQWeNDaFy-C4OgXlev19Xr3-rjxMX-Djv-p-sIjLbAenKnQ1izqGSE0YgMN8gytL7ZU1DOOYTkC7Iqkxo</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1751219490</pqid></control><display><type>article</type><title>Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies</title><source>Open Access: PubMed Central</source><source>JSTOR Archival Journals and Primary Sources Collection</source><creator>Townsend, Sue ; Fennell, Brian J. ; Apgar, James R. ; Lambert, Matthew ; McDonnell, Barry ; Grant, Joanne ; Wade, Jason ; Franklin, Edward ; Foy, Niall ; Shúilleabháin, Deirdre Ní ; Fields, Conor ; Darmanin-Sheehan, Alfredo ; King, Amy ; Paulsen, Janet E. ; Hickling, Timothy P. ; Tchistiakova, Lioudmila ; Cunningham, Orla ; Finlay, William J. J.</creator><creatorcontrib>Townsend, Sue ; Fennell, Brian J. ; Apgar, James R. ; Lambert, Matthew ; McDonnell, Barry ; Grant, Joanne ; Wade, Jason ; Franklin, Edward ; Foy, Niall ; Shúilleabháin, Deirdre Ní ; Fields, Conor ; Darmanin-Sheehan, Alfredo ; King, Amy ; Paulsen, Janet E. ; Hickling, Timothy P. ; Tchistiakova, Lioudmila ; Cunningham, Orla ; Finlay, William J. J.</creatorcontrib><description>Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.1510944112</identifier><identifier>PMID: 26621728</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Amino Acid Sequence ; Amino acids ; Animals ; Antibodies, Monoclonal - chemistry ; Antibodies, Monoclonal - immunology ; Antibodies, Monoclonal - therapeutic use ; Antibody Specificity - immunology ; Biological Sciences ; Clone Cells ; Complementarity Determining Regions - chemistry ; Complementarity Determining Regions - immunology ; Computer Simulation ; Enzyme-Linked Immunosorbent Assay ; Epitopes, T-Lymphocyte - immunology ; Germ Cells - immunology ; Humans ; Immunoglobulin G - chemistry ; Immunoglobulin G - immunology ; Immunoglobulin Heavy Chains - chemistry ; Immunoglobulin Heavy Chains - immunology ; Immunoglobulin Light Chains - chemistry ; Immunoglobulin Light Chains - immunology ; Immunoglobulin Variable Region - chemistry ; Immunoglobulin Variable Region - immunology ; Immunoglobulins ; Models, Molecular ; Molecular Sequence Data ; Mutation - genetics ; Peptide Library ; Protein Stability ; Protein Structure, Tertiary ; Rats ; Rodents ; Sequence Alignment ; Sequence Analysis, Protein ; tau Proteins - chemistry ; tau Proteins - immunology</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.15354-15359</ispartof><rights>Volumes 1–89 and 106–112, copyright as a collective work only; author(s) retains copyright to individual articles</rights><rights>Copyright National Academy of Sciences Dec 15, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c398t-d24fa2485d1356ead34788861e17eee23ddbac75eab43f490f893eb6bf4ed25a3</citedby><cites>FETCH-LOGICAL-c398t-d24fa2485d1356ead34788861e17eee23ddbac75eab43f490f893eb6bf4ed25a3</cites><orcidid>0000-0002-8918-2140</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/112/50.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/26466600$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/26466600$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793,58238,58471</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26621728$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Townsend, Sue</creatorcontrib><creatorcontrib>Fennell, Brian J.</creatorcontrib><creatorcontrib>Apgar, James R.</creatorcontrib><creatorcontrib>Lambert, Matthew</creatorcontrib><creatorcontrib>McDonnell, Barry</creatorcontrib><creatorcontrib>Grant, Joanne</creatorcontrib><creatorcontrib>Wade, Jason</creatorcontrib><creatorcontrib>Franklin, Edward</creatorcontrib><creatorcontrib>Foy, Niall</creatorcontrib><creatorcontrib>Shúilleabháin, Deirdre Ní</creatorcontrib><creatorcontrib>Fields, Conor</creatorcontrib><creatorcontrib>Darmanin-Sheehan, Alfredo</creatorcontrib><creatorcontrib>King, Amy</creatorcontrib><creatorcontrib>Paulsen, Janet E.</creatorcontrib><creatorcontrib>Hickling, Timothy P.</creatorcontrib><creatorcontrib>Tchistiakova, Lioudmila</creatorcontrib><creatorcontrib>Cunningham, Orla</creatorcontrib><creatorcontrib>Finlay, William J. J.</creatorcontrib><title>Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.</description><subject>Amino Acid Sequence</subject><subject>Amino acids</subject><subject>Animals</subject><subject>Antibodies, Monoclonal - chemistry</subject><subject>Antibodies, Monoclonal - immunology</subject><subject>Antibodies, Monoclonal - therapeutic use</subject><subject>Antibody Specificity - immunology</subject><subject>Biological Sciences</subject><subject>Clone Cells</subject><subject>Complementarity Determining Regions - chemistry</subject><subject>Complementarity Determining Regions - immunology</subject><subject>Computer Simulation</subject><subject>Enzyme-Linked Immunosorbent Assay</subject><subject>Epitopes, T-Lymphocyte - immunology</subject><subject>Germ Cells - immunology</subject><subject>Humans</subject><subject>Immunoglobulin G - chemistry</subject><subject>Immunoglobulin G - immunology</subject><subject>Immunoglobulin Heavy Chains - chemistry</subject><subject>Immunoglobulin Heavy Chains - immunology</subject><subject>Immunoglobulin Light Chains - chemistry</subject><subject>Immunoglobulin Light Chains - immunology</subject><subject>Immunoglobulin Variable Region - chemistry</subject><subject>Immunoglobulin Variable Region - immunology</subject><subject>Immunoglobulins</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation - genetics</subject><subject>Peptide Library</subject><subject>Protein Stability</subject><subject>Protein Structure, Tertiary</subject><subject>Rats</subject><subject>Rodents</subject><subject>Sequence Alignment</subject><subject>Sequence Analysis, Protein</subject><subject>tau Proteins - chemistry</subject><subject>tau Proteins - immunology</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkM1LwzAYh4Mobk7PniYDL1665fvjIszhFww8qOeQNunsaJvZtIL_vZmbc5pLAnneh9_7A-AcwTGCgkxWtQljxBBUlCKED0A_PlHCqYKHoA8hFomkmPbASQhLCKFiEh6DHuYcI4FlHwyn3aJydevs6KaoTfM5eu7S0BZt1xa-PgVHuSmDO9veA_B6d_sye0jmT_ePs-k8yYiSbWIxzQ2mkllEGHfGEiqklBw5JJxzmFibmkwwZ1JK8pgtl4q4lKc5dRYzQwbgeuNddWnlbBYDNabUq6aoYiTtTaH__tTFm174D025FDwWMQBXW0Hj3zsXWl0VIXNlaWrnu6CRoCoeoWBEL_-hS981dVwvUgxhpOg3NdlQWeNDaFy-C4OgXlev19Xr3-rjxMX-Djv-p-sIjLbAenKnQ1izqGSE0YgMN8gytL7ZU1DOOYTkC7Iqkxo</recordid><startdate>20151215</startdate><enddate>20151215</enddate><creator>Townsend, Sue</creator><creator>Fennell, Brian J.</creator><creator>Apgar, James R.</creator><creator>Lambert, Matthew</creator><creator>McDonnell, Barry</creator><creator>Grant, Joanne</creator><creator>Wade, Jason</creator><creator>Franklin, Edward</creator><creator>Foy, Niall</creator><creator>Shúilleabháin, Deirdre Ní</creator><creator>Fields, Conor</creator><creator>Darmanin-Sheehan, Alfredo</creator><creator>King, Amy</creator><creator>Paulsen, Janet E.</creator><creator>Hickling, Timothy P.</creator><creator>Tchistiakova, Lioudmila</creator><creator>Cunningham, Orla</creator><creator>Finlay, William J. J.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0002-8918-2140</orcidid></search><sort><creationdate>20151215</creationdate><title>Augmented Binary Substitution</title><author>Townsend, Sue ; Fennell, Brian J. ; Apgar, James R. ; Lambert, Matthew ; McDonnell, Barry ; Grant, Joanne ; Wade, Jason ; Franklin, Edward ; Foy, Niall ; Shúilleabháin, Deirdre Ní ; Fields, Conor ; Darmanin-Sheehan, Alfredo ; King, Amy ; Paulsen, Janet E. ; Hickling, Timothy P. ; Tchistiakova, Lioudmila ; Cunningham, Orla ; Finlay, William J. J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c398t-d24fa2485d1356ead34788861e17eee23ddbac75eab43f490f893eb6bf4ed25a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Amino Acid Sequence</topic><topic>Amino acids</topic><topic>Animals</topic><topic>Antibodies, Monoclonal - chemistry</topic><topic>Antibodies, Monoclonal - immunology</topic><topic>Antibodies, Monoclonal - therapeutic use</topic><topic>Antibody Specificity - immunology</topic><topic>Biological Sciences</topic><topic>Clone Cells</topic><topic>Complementarity Determining Regions - chemistry</topic><topic>Complementarity Determining Regions - immunology</topic><topic>Computer Simulation</topic><topic>Enzyme-Linked Immunosorbent Assay</topic><topic>Epitopes, T-Lymphocyte - immunology</topic><topic>Germ Cells - immunology</topic><topic>Humans</topic><topic>Immunoglobulin G - chemistry</topic><topic>Immunoglobulin G - immunology</topic><topic>Immunoglobulin Heavy Chains - chemistry</topic><topic>Immunoglobulin Heavy Chains - immunology</topic><topic>Immunoglobulin Light Chains - chemistry</topic><topic>Immunoglobulin Light Chains - immunology</topic><topic>Immunoglobulin Variable Region - chemistry</topic><topic>Immunoglobulin Variable Region - immunology</topic><topic>Immunoglobulins</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation - genetics</topic><topic>Peptide Library</topic><topic>Protein Stability</topic><topic>Protein Structure, Tertiary</topic><topic>Rats</topic><topic>Rodents</topic><topic>Sequence Alignment</topic><topic>Sequence Analysis, Protein</topic><topic>tau Proteins - chemistry</topic><topic>tau Proteins - immunology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Townsend, Sue</creatorcontrib><creatorcontrib>Fennell, Brian J.</creatorcontrib><creatorcontrib>Apgar, James R.</creatorcontrib><creatorcontrib>Lambert, Matthew</creatorcontrib><creatorcontrib>McDonnell, Barry</creatorcontrib><creatorcontrib>Grant, Joanne</creatorcontrib><creatorcontrib>Wade, Jason</creatorcontrib><creatorcontrib>Franklin, Edward</creatorcontrib><creatorcontrib>Foy, Niall</creatorcontrib><creatorcontrib>Shúilleabháin, Deirdre Ní</creatorcontrib><creatorcontrib>Fields, Conor</creatorcontrib><creatorcontrib>Darmanin-Sheehan, Alfredo</creatorcontrib><creatorcontrib>King, Amy</creatorcontrib><creatorcontrib>Paulsen, Janet E.</creatorcontrib><creatorcontrib>Hickling, Timothy P.</creatorcontrib><creatorcontrib>Tchistiakova, Lioudmila</creatorcontrib><creatorcontrib>Cunningham, Orla</creatorcontrib><creatorcontrib>Finlay, William J. J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Townsend, Sue</au><au>Fennell, Brian J.</au><au>Apgar, James R.</au><au>Lambert, Matthew</au><au>McDonnell, Barry</au><au>Grant, Joanne</au><au>Wade, Jason</au><au>Franklin, Edward</au><au>Foy, Niall</au><au>Shúilleabháin, Deirdre Ní</au><au>Fields, Conor</au><au>Darmanin-Sheehan, Alfredo</au><au>King, Amy</au><au>Paulsen, Janet E.</au><au>Hickling, Timothy P.</au><au>Tchistiakova, Lioudmila</au><au>Cunningham, Orla</au><au>Finlay, William J. J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2015-12-15</date><risdate>2015</risdate><volume>112</volume><issue>50</issue><spage>15354</spage><epage>15359</epage><pages>15354-15359</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Although humanized antibodies have been highly successful in the clinic, all current humanization techniques have potential limitations, such as: reliance on rodent hosts, immunogenicity due to high non-germ-line amino acid content, v-domain destabilization, expression and formulation issues. This study presents a technology that generates stable, soluble, ultrahumanized antibodies via single-step complementarity-determining region (CDR) germ-lining. For three antibodies from three separate key immune host species, binary substitution CDR cassettes were inserted into preferred human frameworks to form libraries in which only the parental or human germ-line destination residue was encoded at each position. The CDR-H3 in each case was also augmented with 1 ± 1 random substitution per clone. Each library was then screened for clones with restored antigen binding capacity. Lead ultrahumanized clones demonstrated high stability, with affinity and specificity equivalent to, or better than, the parental IgG. Critically, this was mainly achieved on germ-line frameworks by simultaneously subtracting up to 19 redundant non-germ-line residues in the CDRs. This process significantly lowered non-germ-line sequence content, minimized immunogenicity risk in the final molecules and provided a heat map for the essential non-germ-line CDR residue content of each antibody. The ABS technology therefore fully optimizes the clinical potential of antibodies from rodents and alternative immune hosts, rendering them indistinguishable from fully human in a simple, single-pass process.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>26621728</pmid><doi>10.1073/pnas.1510944112</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0002-8918-2140</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0027-8424 |
ispartof | Proceedings of the National Academy of Sciences - PNAS, 2015-12, Vol.112 (50), p.15354-15359 |
issn | 0027-8424 1091-6490 |
language | eng |
recordid | cdi_proquest_miscellaneous_1749999790 |
source | Open Access: PubMed Central; JSTOR Archival Journals and Primary Sources Collection |
subjects | Amino Acid Sequence Amino acids Animals Antibodies, Monoclonal - chemistry Antibodies, Monoclonal - immunology Antibodies, Monoclonal - therapeutic use Antibody Specificity - immunology Biological Sciences Clone Cells Complementarity Determining Regions - chemistry Complementarity Determining Regions - immunology Computer Simulation Enzyme-Linked Immunosorbent Assay Epitopes, T-Lymphocyte - immunology Germ Cells - immunology Humans Immunoglobulin G - chemistry Immunoglobulin G - immunology Immunoglobulin Heavy Chains - chemistry Immunoglobulin Heavy Chains - immunology Immunoglobulin Light Chains - chemistry Immunoglobulin Light Chains - immunology Immunoglobulin Variable Region - chemistry Immunoglobulin Variable Region - immunology Immunoglobulins Models, Molecular Molecular Sequence Data Mutation - genetics Peptide Library Protein Stability Protein Structure, Tertiary Rats Rodents Sequence Alignment Sequence Analysis, Protein tau Proteins - chemistry tau Proteins - immunology |
title | Augmented Binary Substitution: Single-pass CDR germ-lining and stabilization of therapeutic antibodies |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T21%3A53%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Augmented%20Binary%20Substitution:%20Single-pass%20CDR%20germ-lining%20and%20stabilization%20of%20therapeutic%20antibodies&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Townsend,%20Sue&rft.date=2015-12-15&rft.volume=112&rft.issue=50&rft.spage=15354&rft.epage=15359&rft.pages=15354-15359&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.1510944112&rft_dat=%3Cjstor_proqu%3E26466600%3C/jstor_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c398t-d24fa2485d1356ead34788861e17eee23ddbac75eab43f490f893eb6bf4ed25a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1751219490&rft_id=info:pmid/26621728&rft_jstor_id=26466600&rfr_iscdi=true |