Loading…

Intramolecular Gold-Catalyzed and NaH-Supported Cyclization Reactions of N-Propargyl Indole Derivatives with Pyrazole and Pyrrole Rings: Synthesis of Pyrazolodiazepinoindole, Pyrazolopyrazinoindole, and Pyrrolopyrazinoindole

Gold-catalyzed and NaH-supported intramolecular cyclization of N-propargyl indole derivatives with pyrazole and pyrrole units attached to indole is described. An efficient route to the synthesis of pyrazolodiazepinoindole, pyrazolopyrazinoindole, and pyrrolopyrazinoindole has been established. First...

Full description

Saved in:
Bibliographic Details
Published in:Journal of organic chemistry 2015-12, Vol.80 (24), p.12552-12561
Main Authors: Basceken, Sinan, Kaya, Serdal, Balci, Metin
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Gold-catalyzed and NaH-supported intramolecular cyclization of N-propargyl indole derivatives with pyrazole and pyrrole units attached to indole is described. An efficient route to the synthesis of pyrazolodiazepinoindole, pyrazolopyrazinoindole, and pyrrolopyrazinoindole has been established. First, N-propargyl 2-(1H-pyrazol-5-yl)-1H-indole and 2-(1H-pyrrol-2-yl)-1H-indole were synthesized. Introduction of various substituents into the alkyne functionality was accomplished by Sonogashira cross-coupling reaction. Gold-catalyzed cyclization of pyrazoles having a terminal alkyne afforded the 6-exo-dig cyclization product. However, exclusive formation of 7-endo-dig cyclization products was observed with internal alkynes. On the other hand, cyclization with NaH only resulted in the formation of 6-exo-dig cyclization products regardless of the substitution of the alkyne functionality. Allenic intermediates were postulated for this outcome.
ISSN:0022-3263
1520-6904
DOI:10.1021/acs.joc.5b02419