Loading…

Quinolone resistant Aeromonas spp. as carriers and potential tracers of acquired antibiotic resistance in hospital and municipal wastewater

Members of the genus Aeromonas are recognized carriers of antibiotic resistance in aquatic environments. However, their importance on the spread of resistance from hospital effluents to the environment is poorly understood. Quinolone resistant Aeromonas spp. (n=112) isolated from hospital effluent (...

Full description

Saved in:
Bibliographic Details
Published in:The Science of the total environment 2016-01, Vol.542 (Pt A), p.665-671
Main Authors: Varela, Ana Rita, Nunes, Olga C., Manaia, Célia M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Members of the genus Aeromonas are recognized carriers of antibiotic resistance in aquatic environments. However, their importance on the spread of resistance from hospital effluents to the environment is poorly understood. Quinolone resistant Aeromonas spp. (n=112) isolated from hospital effluent (HE) and from raw (RWW) and treated wastewater (TWW) of the receiving urban wastewater treatment plant (UWTP) were characterized. Species identification and genetic intraspecies diversity were assessed based on the 16S rRNA, cpn60 and gyrB genes sequence analysis. The antibiotic resistance phenotypes and genotypes (qnrA, qnrB, qnrC, qnrD, qnrS, qnrVC; qepA; oqxAB; aac(6′)-Ib-cr; blaOXA; incU) were analyzed in function of the origin and taxonomic group. Most isolates belonged to the species Aeromonas caviae and Aeromonas hydrophila (50% and 41%, respectively). The quinolone and the beta-lactamase resistance genes aac(6′)-Ib-cr and blaOXA, including gene blaOXA-101, identified for the first time in Aeromonas spp., were detected in 58% and 56% of the isolates, respectively, with identical prevalence in HE and UWTP wastewater. In contrast, the gene qnrS2 was observed mainly in isolates from the UWTP (51%) and rarely in HE isolates (3%), suggesting that its origin is not the clinical setting. Bacterial groups and genes that allow the identification of major routes of antibiotic resistance dissemination are valuable tools to control this problem. In this study, it was concluded that members of the genus Aeromonas harboring the genes aac(6′)-Ib-cr and blaOXA are relevant tracers of antibiotic resistance dissemination in wastewater habitats, while those yielding the gene qnrS2 allow the traceability from non-clinical sources. [Display omitted] •Characterization of quinolone resistant Aeromonas from urban wastewaters•The highest prevalence of multidrug resistance among isolates from hospital effluent•Aeromonas carry different antibiotic resistance genes depending on their origin.•First report of the beta-lactamase gene blaOXA-101 in Aeromonas
ISSN:0048-9697
1879-1026
DOI:10.1016/j.scitotenv.2015.10.124