Loading…
Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures
The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well su...
Saved in:
Published in: | Applied microbiology and biotechnology 2015-12, Vol.99 (23), p.9935-9949 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3 |
container_end_page | 9949 |
container_issue | 23 |
container_start_page | 9935 |
container_title | Applied microbiology and biotechnology |
container_volume | 99 |
creator | Cervera, Laura Fuenmayor, Javier González-Domínguez, Irene Gutiérrez-Granados, Sonia Segura, Maria Mercedes Gòdia, Francesc |
description | The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %. |
doi_str_mv | 10.1007/s00253-015-6842-4 |
format | article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751214679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434716961</galeid><sourcerecordid>A434716961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhAbhApF7oIcX_nRyrqrQVlZBYera89nhxydqLnVTAO_DOOGRBXYQQ9sHW-PeNZ0ZfVT3H6AQjJF9nhAinDcK8ES0jDXtQLTCjpEECs4fVAmHJG8m79qB6kvMtQpi0QjyuDoggsuWULqrvS-jBDD6GWgdbx-3gN_6b_hmIrh6SDtntAAgfdTCQam2tH_wd5NrFVPtgEugMtr7zacxN7z9BvdVp8KYvlxTtOOt9qC_P35KO1nnMWwh5Chro-9qM_TAmyE-rR073GZ7tzsPq5s35h7PL5vrdxdXZ6XVjJKJD0wqMO8ethI4IZFrGjbGio9hSRlopVwJpxznlwnFsuFnZlhINppVcgpCOHlav5rylus8j5EFtfJ4q0QHimFWZGyaYCdn9B0opLl8jUdCjP9DbOKZQGpkoInmLxT1qrXtQPrhYhmympOqUUSax6AQu1MlfqLItbLyJAZwv8T3B8Z6gMAN8GdZ6zFldLd_vs3hmTYo5J3Bqm_xGp68KIzU5S83OUsVZanKWYkXzYtfcuNqA_a34ZaUCkBnI5SmsId3r_h9ZX84ip6PS6-SzulkShAUqiyNG6Q9TW-BK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732758166</pqid></control><display><type>article</type><title>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Cervera, Laura ; Fuenmayor, Javier ; González-Domínguez, Irene ; Gutiérrez-Granados, Sonia ; Segura, Maria Mercedes ; Gòdia, Francesc</creator><creatorcontrib>Cervera, Laura ; Fuenmayor, Javier ; González-Domínguez, Irene ; Gutiérrez-Granados, Sonia ; Segura, Maria Mercedes ; Gòdia, Francesc</creatorcontrib><description>The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6842-4</identifier><identifier>PMID: 26278533</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>acetates ; additives ; Analysis ; Ataxia ; Biological products ; Biomedical and Life Sciences ; biopharmaceuticals ; bioprocessing ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; butyrates ; Caffeine ; Cell culture ; Cell cycle ; Cell growth ; Cellular biology ; Design of experiments ; dimethyl sulfoxide ; DNA ; Experimental design ; Gene Expression ; HEK293 Cells ; Humans ; hydroxyurea ; Kinases ; Life Sciences ; Lithium ; mammals ; Manufacturing ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Optimization ; Pharmaceuticals ; Physiological aspects ; Plasmids ; Production processes ; Productivity ; Proteins ; sodium ; Studies ; transfection ; Transfection - methods ; valproic acid ; viability ; Virosomes - genetics ; Virosomes - metabolism ; Viruses</subject><ispartof>Applied microbiology and biotechnology, 2015-12, Vol.99 (23), p.9935-9949</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</citedby><cites>FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1732758166/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1732758166?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26278533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cervera, Laura</creatorcontrib><creatorcontrib>Fuenmayor, Javier</creatorcontrib><creatorcontrib>González-Domínguez, Irene</creatorcontrib><creatorcontrib>Gutiérrez-Granados, Sonia</creatorcontrib><creatorcontrib>Segura, Maria Mercedes</creatorcontrib><creatorcontrib>Gòdia, Francesc</creatorcontrib><title>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.</description><subject>acetates</subject><subject>additives</subject><subject>Analysis</subject><subject>Ataxia</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>biopharmaceuticals</subject><subject>bioprocessing</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>butyrates</subject><subject>Caffeine</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cellular biology</subject><subject>Design of experiments</subject><subject>dimethyl sulfoxide</subject><subject>DNA</subject><subject>Experimental design</subject><subject>Gene Expression</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>hydroxyurea</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lithium</subject><subject>mammals</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Optimization</subject><subject>Pharmaceuticals</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Production processes</subject><subject>Productivity</subject><subject>Proteins</subject><subject>sodium</subject><subject>Studies</subject><subject>transfection</subject><subject>Transfection - methods</subject><subject>valproic acid</subject><subject>viability</subject><subject>Virosomes - genetics</subject><subject>Virosomes - metabolism</subject><subject>Viruses</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNks9u1DAQxiMEokvhAbhApF7oIcX_nRyrqrQVlZBYera89nhxydqLnVTAO_DOOGRBXYQQ9sHW-PeNZ0ZfVT3H6AQjJF9nhAinDcK8ES0jDXtQLTCjpEECs4fVAmHJG8m79qB6kvMtQpi0QjyuDoggsuWULqrvS-jBDD6GWgdbx-3gN_6b_hmIrh6SDtntAAgfdTCQam2tH_wd5NrFVPtgEugMtr7zacxN7z9BvdVp8KYvlxTtOOt9qC_P35KO1nnMWwh5Chro-9qM_TAmyE-rR073GZ7tzsPq5s35h7PL5vrdxdXZ6XVjJKJD0wqMO8ethI4IZFrGjbGio9hSRlopVwJpxznlwnFsuFnZlhINppVcgpCOHlav5rylus8j5EFtfJ4q0QHimFWZGyaYCdn9B0opLl8jUdCjP9DbOKZQGpkoInmLxT1qrXtQPrhYhmympOqUUSax6AQu1MlfqLItbLyJAZwv8T3B8Z6gMAN8GdZ6zFldLd_vs3hmTYo5J3Bqm_xGp68KIzU5S83OUsVZanKWYkXzYtfcuNqA_a34ZaUCkBnI5SmsId3r_h9ZX84ip6PS6-SzulkShAUqiyNG6Q9TW-BK</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Cervera, Laura</creator><creator>Fuenmayor, Javier</creator><creator>González-Domínguez, Irene</creator><creator>Gutiérrez-Granados, Sonia</creator><creator>Segura, Maria Mercedes</creator><creator>Gòdia, Francesc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20151201</creationdate><title>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</title><author>Cervera, Laura ; Fuenmayor, Javier ; González-Domínguez, Irene ; Gutiérrez-Granados, Sonia ; Segura, Maria Mercedes ; Gòdia, Francesc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>acetates</topic><topic>additives</topic><topic>Analysis</topic><topic>Ataxia</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>biopharmaceuticals</topic><topic>bioprocessing</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>butyrates</topic><topic>Caffeine</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cellular biology</topic><topic>Design of experiments</topic><topic>dimethyl sulfoxide</topic><topic>DNA</topic><topic>Experimental design</topic><topic>Gene Expression</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>hydroxyurea</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lithium</topic><topic>mammals</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Optimization</topic><topic>Pharmaceuticals</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Production processes</topic><topic>Productivity</topic><topic>Proteins</topic><topic>sodium</topic><topic>Studies</topic><topic>transfection</topic><topic>Transfection - methods</topic><topic>valproic acid</topic><topic>viability</topic><topic>Virosomes - genetics</topic><topic>Virosomes - metabolism</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cervera, Laura</creatorcontrib><creatorcontrib>Fuenmayor, Javier</creatorcontrib><creatorcontrib>González-Domínguez, Irene</creatorcontrib><creatorcontrib>Gutiérrez-Granados, Sonia</creatorcontrib><creatorcontrib>Segura, Maria Mercedes</creatorcontrib><creatorcontrib>Gòdia, Francesc</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cervera, Laura</au><au>Fuenmayor, Javier</au><au>González-Domínguez, Irene</au><au>Gutiérrez-Granados, Sonia</au><au>Segura, Maria Mercedes</au><au>Gòdia, Francesc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>99</volume><issue>23</issue><spage>9935</spage><epage>9949</epage><pages>9935-9949</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26278533</pmid><doi>10.1007/s00253-015-6842-4</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0175-7598 |
ispartof | Applied microbiology and biotechnology, 2015-12, Vol.99 (23), p.9935-9949 |
issn | 0175-7598 1432-0614 |
language | eng |
recordid | cdi_proquest_miscellaneous_1751214679 |
source | ABI/INFORM Global; Springer Nature |
subjects | acetates additives Analysis Ataxia Biological products Biomedical and Life Sciences biopharmaceuticals bioprocessing Biosynthesis Biotechnological Products and Process Engineering Biotechnology butyrates Caffeine Cell culture Cell cycle Cell growth Cellular biology Design of experiments dimethyl sulfoxide DNA Experimental design Gene Expression HEK293 Cells Humans hydroxyurea Kinases Life Sciences Lithium mammals Manufacturing Methods Microbial Genetics and Genomics Microbiology Optimization Pharmaceuticals Physiological aspects Plasmids Production processes Productivity Proteins sodium Studies transfection Transfection - methods valproic acid viability Virosomes - genetics Virosomes - metabolism Viruses |
title | Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20and%20optimization%20of%20transfection%20enhancer%20additives%20for%20increased%20virus-like%20particle%20production%20in%20HEK293%20suspension%20cell%20cultures&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Cervera,%20Laura&rft.date=2015-12-01&rft.volume=99&rft.issue=23&rft.spage=9935&rft.epage=9949&rft.pages=9935-9949&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6842-4&rft_dat=%3Cgale_proqu%3EA434716961%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732758166&rft_id=info:pmid/26278533&rft_galeid=A434716961&rfr_iscdi=true |