Loading…

Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures

The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well su...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2015-12, Vol.99 (23), p.9935-9949
Main Authors: Cervera, Laura, Fuenmayor, Javier, González-Domínguez, Irene, Gutiérrez-Granados, Sonia, Segura, Maria Mercedes, Gòdia, Francesc
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3
cites cdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3
container_end_page 9949
container_issue 23
container_start_page 9935
container_title Applied microbiology and biotechnology
container_volume 99
creator Cervera, Laura
Fuenmayor, Javier
González-Domínguez, Irene
Gutiérrez-Granados, Sonia
Segura, Maria Mercedes
Gòdia, Francesc
description The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.
doi_str_mv 10.1007/s00253-015-6842-4
format article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1751214679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A434716961</galeid><sourcerecordid>A434716961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</originalsourceid><addsrcrecordid>eNqNks9u1DAQxiMEokvhAbhApF7oIcX_nRyrqrQVlZBYera89nhxydqLnVTAO_DOOGRBXYQQ9sHW-PeNZ0ZfVT3H6AQjJF9nhAinDcK8ES0jDXtQLTCjpEECs4fVAmHJG8m79qB6kvMtQpi0QjyuDoggsuWULqrvS-jBDD6GWgdbx-3gN_6b_hmIrh6SDtntAAgfdTCQam2tH_wd5NrFVPtgEugMtr7zacxN7z9BvdVp8KYvlxTtOOt9qC_P35KO1nnMWwh5Chro-9qM_TAmyE-rR073GZ7tzsPq5s35h7PL5vrdxdXZ6XVjJKJD0wqMO8ethI4IZFrGjbGio9hSRlopVwJpxznlwnFsuFnZlhINppVcgpCOHlav5rylus8j5EFtfJ4q0QHimFWZGyaYCdn9B0opLl8jUdCjP9DbOKZQGpkoInmLxT1qrXtQPrhYhmympOqUUSax6AQu1MlfqLItbLyJAZwv8T3B8Z6gMAN8GdZ6zFldLd_vs3hmTYo5J3Bqm_xGp68KIzU5S83OUsVZanKWYkXzYtfcuNqA_a34ZaUCkBnI5SmsId3r_h9ZX84ip6PS6-SzulkShAUqiyNG6Q9TW-BK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1732758166</pqid></control><display><type>article</type><title>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</title><source>ABI/INFORM Global</source><source>Springer Nature</source><creator>Cervera, Laura ; Fuenmayor, Javier ; González-Domínguez, Irene ; Gutiérrez-Granados, Sonia ; Segura, Maria Mercedes ; Gòdia, Francesc</creator><creatorcontrib>Cervera, Laura ; Fuenmayor, Javier ; González-Domínguez, Irene ; Gutiérrez-Granados, Sonia ; Segura, Maria Mercedes ; Gòdia, Francesc</creatorcontrib><description>The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.</description><identifier>ISSN: 0175-7598</identifier><identifier>EISSN: 1432-0614</identifier><identifier>DOI: 10.1007/s00253-015-6842-4</identifier><identifier>PMID: 26278533</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>acetates ; additives ; Analysis ; Ataxia ; Biological products ; Biomedical and Life Sciences ; biopharmaceuticals ; bioprocessing ; Biosynthesis ; Biotechnological Products and Process Engineering ; Biotechnology ; butyrates ; Caffeine ; Cell culture ; Cell cycle ; Cell growth ; Cellular biology ; Design of experiments ; dimethyl sulfoxide ; DNA ; Experimental design ; Gene Expression ; HEK293 Cells ; Humans ; hydroxyurea ; Kinases ; Life Sciences ; Lithium ; mammals ; Manufacturing ; Methods ; Microbial Genetics and Genomics ; Microbiology ; Optimization ; Pharmaceuticals ; Physiological aspects ; Plasmids ; Production processes ; Productivity ; Proteins ; sodium ; Studies ; transfection ; Transfection - methods ; valproic acid ; viability ; Virosomes - genetics ; Virosomes - metabolism ; Viruses</subject><ispartof>Applied microbiology and biotechnology, 2015-12, Vol.99 (23), p.9935-9949</ispartof><rights>Springer-Verlag Berlin Heidelberg 2015</rights><rights>COPYRIGHT 2015 Springer</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</citedby><cites>FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1732758166/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$H</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1732758166?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11688,27924,27925,36060,36061,44363,74895</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/26278533$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cervera, Laura</creatorcontrib><creatorcontrib>Fuenmayor, Javier</creatorcontrib><creatorcontrib>González-Domínguez, Irene</creatorcontrib><creatorcontrib>Gutiérrez-Granados, Sonia</creatorcontrib><creatorcontrib>Segura, Maria Mercedes</creatorcontrib><creatorcontrib>Gòdia, Francesc</creatorcontrib><title>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</title><title>Applied microbiology and biotechnology</title><addtitle>Appl Microbiol Biotechnol</addtitle><addtitle>Appl Microbiol Biotechnol</addtitle><description>The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.</description><subject>acetates</subject><subject>additives</subject><subject>Analysis</subject><subject>Ataxia</subject><subject>Biological products</subject><subject>Biomedical and Life Sciences</subject><subject>biopharmaceuticals</subject><subject>bioprocessing</subject><subject>Biosynthesis</subject><subject>Biotechnological Products and Process Engineering</subject><subject>Biotechnology</subject><subject>butyrates</subject><subject>Caffeine</subject><subject>Cell culture</subject><subject>Cell cycle</subject><subject>Cell growth</subject><subject>Cellular biology</subject><subject>Design of experiments</subject><subject>dimethyl sulfoxide</subject><subject>DNA</subject><subject>Experimental design</subject><subject>Gene Expression</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>hydroxyurea</subject><subject>Kinases</subject><subject>Life Sciences</subject><subject>Lithium</subject><subject>mammals</subject><subject>Manufacturing</subject><subject>Methods</subject><subject>Microbial Genetics and Genomics</subject><subject>Microbiology</subject><subject>Optimization</subject><subject>Pharmaceuticals</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Production processes</subject><subject>Productivity</subject><subject>Proteins</subject><subject>sodium</subject><subject>Studies</subject><subject>transfection</subject><subject>Transfection - methods</subject><subject>valproic acid</subject><subject>viability</subject><subject>Virosomes - genetics</subject><subject>Virosomes - metabolism</subject><subject>Viruses</subject><issn>0175-7598</issn><issn>1432-0614</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNqNks9u1DAQxiMEokvhAbhApF7oIcX_nRyrqrQVlZBYera89nhxydqLnVTAO_DOOGRBXYQQ9sHW-PeNZ0ZfVT3H6AQjJF9nhAinDcK8ES0jDXtQLTCjpEECs4fVAmHJG8m79qB6kvMtQpi0QjyuDoggsuWULqrvS-jBDD6GWgdbx-3gN_6b_hmIrh6SDtntAAgfdTCQam2tH_wd5NrFVPtgEugMtr7zacxN7z9BvdVp8KYvlxTtOOt9qC_P35KO1nnMWwh5Chro-9qM_TAmyE-rR073GZ7tzsPq5s35h7PL5vrdxdXZ6XVjJKJD0wqMO8ethI4IZFrGjbGio9hSRlopVwJpxznlwnFsuFnZlhINppVcgpCOHlav5rylus8j5EFtfJ4q0QHimFWZGyaYCdn9B0opLl8jUdCjP9DbOKZQGpkoInmLxT1qrXtQPrhYhmympOqUUSax6AQu1MlfqLItbLyJAZwv8T3B8Z6gMAN8GdZ6zFldLd_vs3hmTYo5J3Bqm_xGp68KIzU5S83OUsVZanKWYkXzYtfcuNqA_a34ZaUCkBnI5SmsId3r_h9ZX84ip6PS6-SzulkShAUqiyNG6Q9TW-BK</recordid><startdate>20151201</startdate><enddate>20151201</enddate><creator>Cervera, Laura</creator><creator>Fuenmayor, Javier</creator><creator>González-Domínguez, Irene</creator><creator>Gutiérrez-Granados, Sonia</creator><creator>Segura, Maria Mercedes</creator><creator>Gòdia, Francesc</creator><general>Springer Berlin Heidelberg</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7WY</scope><scope>7WZ</scope><scope>7X7</scope><scope>7XB</scope><scope>87Z</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>FYUFA</scope><scope>F~G</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K60</scope><scope>K6~</scope><scope>K9.</scope><scope>L.-</scope><scope>LK8</scope><scope>M0C</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>7QO</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20151201</creationdate><title>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</title><author>Cervera, Laura ; Fuenmayor, Javier ; González-Domínguez, Irene ; Gutiérrez-Granados, Sonia ; Segura, Maria Mercedes ; Gòdia, Francesc</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>acetates</topic><topic>additives</topic><topic>Analysis</topic><topic>Ataxia</topic><topic>Biological products</topic><topic>Biomedical and Life Sciences</topic><topic>biopharmaceuticals</topic><topic>bioprocessing</topic><topic>Biosynthesis</topic><topic>Biotechnological Products and Process Engineering</topic><topic>Biotechnology</topic><topic>butyrates</topic><topic>Caffeine</topic><topic>Cell culture</topic><topic>Cell cycle</topic><topic>Cell growth</topic><topic>Cellular biology</topic><topic>Design of experiments</topic><topic>dimethyl sulfoxide</topic><topic>DNA</topic><topic>Experimental design</topic><topic>Gene Expression</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>hydroxyurea</topic><topic>Kinases</topic><topic>Life Sciences</topic><topic>Lithium</topic><topic>mammals</topic><topic>Manufacturing</topic><topic>Methods</topic><topic>Microbial Genetics and Genomics</topic><topic>Microbiology</topic><topic>Optimization</topic><topic>Pharmaceuticals</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Production processes</topic><topic>Productivity</topic><topic>Proteins</topic><topic>sodium</topic><topic>Studies</topic><topic>transfection</topic><topic>Transfection - methods</topic><topic>valproic acid</topic><topic>viability</topic><topic>Virosomes - genetics</topic><topic>Virosomes - metabolism</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cervera, Laura</creatorcontrib><creatorcontrib>Fuenmayor, Javier</creatorcontrib><creatorcontrib>González-Domínguez, Irene</creatorcontrib><creatorcontrib>Gutiérrez-Granados, Sonia</creatorcontrib><creatorcontrib>Segura, Maria Mercedes</creatorcontrib><creatorcontrib>Gòdia, Francesc</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>ABI/INFORM Complete</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>Health Research Premium Collection</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Biological Science Collection</collection><collection>ABI/INFORM Global</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Biotechnology Research Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Applied microbiology and biotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cervera, Laura</au><au>Fuenmayor, Javier</au><au>González-Domínguez, Irene</au><au>Gutiérrez-Granados, Sonia</au><au>Segura, Maria Mercedes</au><au>Gòdia, Francesc</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures</atitle><jtitle>Applied microbiology and biotechnology</jtitle><stitle>Appl Microbiol Biotechnol</stitle><addtitle>Appl Microbiol Biotechnol</addtitle><date>2015-12-01</date><risdate>2015</risdate><volume>99</volume><issue>23</issue><spage>9935</spage><epage>9949</epage><pages>9935-9949</pages><issn>0175-7598</issn><eissn>1432-0614</eissn><abstract>The manufacturing of biopharmaceuticals in mammalian cells typically relies on the use of stable producer cell lines. However, in recent years, transient gene expression has emerged as a suitable technology for rapid production of biopharmaceuticals. Transient gene expression is particularly well suited for early developmental phases, where several potential therapeutic targets need to be produced and tested in vivo. As a relatively new bioprocessing modality, a number of opportunities exist for improving cell culture productivity upon transient transfection. For instance, several compounds have shown positive effects on transient gene expression. These transfection enhancers either facilitate entry of PEI/DNA transfection complexes into the cell or nucleus or increase levels of gene expression. In this work, the potential of combining transfection enhancers to increase Gag-based virus-like particle production levels upon transfection of suspension-growing HEK 293 cells is evaluated. Using Plackett–Burman design of experiments, it is first tested the effect of eight transfection enhancers: trichostatin A, valproic acid, sodium butyrate, dimethyl sulfoxide (DMSO), lithium acetate, caffeine, hydroxyurea, and nocodazole. An optimal combination of compounds exhibiting the highest effect on gene expression levels was subsequently identified using a surface response experimental design. The optimal consisted on the addition of 20 mM lithium acetate, 3.36 mM valproic acid, and 5.04 mM caffeine which increased VLP production levels 3.8-fold, while maintaining cell culture viability at 94 %.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><pmid>26278533</pmid><doi>10.1007/s00253-015-6842-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0175-7598
ispartof Applied microbiology and biotechnology, 2015-12, Vol.99 (23), p.9935-9949
issn 0175-7598
1432-0614
language eng
recordid cdi_proquest_miscellaneous_1751214679
source ABI/INFORM Global; Springer Nature
subjects acetates
additives
Analysis
Ataxia
Biological products
Biomedical and Life Sciences
biopharmaceuticals
bioprocessing
Biosynthesis
Biotechnological Products and Process Engineering
Biotechnology
butyrates
Caffeine
Cell culture
Cell cycle
Cell growth
Cellular biology
Design of experiments
dimethyl sulfoxide
DNA
Experimental design
Gene Expression
HEK293 Cells
Humans
hydroxyurea
Kinases
Life Sciences
Lithium
mammals
Manufacturing
Methods
Microbial Genetics and Genomics
Microbiology
Optimization
Pharmaceuticals
Physiological aspects
Plasmids
Production processes
Productivity
Proteins
sodium
Studies
transfection
Transfection - methods
valproic acid
viability
Virosomes - genetics
Virosomes - metabolism
Viruses
title Selection and optimization of transfection enhancer additives for increased virus-like particle production in HEK293 suspension cell cultures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A24%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Selection%20and%20optimization%20of%20transfection%20enhancer%20additives%20for%20increased%20virus-like%20particle%20production%20in%20HEK293%20suspension%20cell%20cultures&rft.jtitle=Applied%20microbiology%20and%20biotechnology&rft.au=Cervera,%20Laura&rft.date=2015-12-01&rft.volume=99&rft.issue=23&rft.spage=9935&rft.epage=9949&rft.pages=9935-9949&rft.issn=0175-7598&rft.eissn=1432-0614&rft_id=info:doi/10.1007/s00253-015-6842-4&rft_dat=%3Cgale_proqu%3EA434716961%3C/gale_proqu%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c703t-86119f5d7e9260c845ccd6931d342877b60af55356f51c5cbd832aec8757e67f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1732758166&rft_id=info:pmid/26278533&rft_galeid=A434716961&rfr_iscdi=true