Loading…
Oxidative stress‐induced apoptosis of cochlear sensory cells: otoprotective strategies
Apoptosis is an important process, both for normal development of the inner ear and for removal of oxidative‐stress damaged sensory cells from the cochlea. Oxidative‐stressors of auditory sensory cells include: loss of trophic factor support, ischemia‐reperfusion, and ototoxins. Loss of trophic fact...
Saved in:
Published in: | International journal of developmental neuroscience 2000-06, Vol.18 (2-3), p.259-270 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Apoptosis is an important process, both for normal development of the inner ear and for removal of oxidative‐stress damaged sensory cells from the cochlea. Oxidative‐stressors of auditory sensory cells include: loss of trophic factor support, ischemia‐reperfusion, and ototoxins. Loss of trophic factor support and cisplatin ototoxicity, both initiate the intracellular production of reactive oxygen species and free radicals. The interaction of reactive oxygen species and free radicals with membrane phospholipids of auditory sensory cells creates aldehydic lipid peroxidation products. One of these aldehydes, 4‐hydroxynonenal, functions as a mediator of apoptosis for both auditory neurons and hair cells. We present several approaches for the prevention of auditory sensory loss from reactive oxygen species‐induced apoptosis: 1) preventing the formation of reactive oxygen species; (2) neutralizing the toxic products of membrane lipid peroxidation; and 3) blocking the damaged sensory cells’ apoptotic pathway. |
---|---|
ISSN: | 0736-5748 1873-474X |
DOI: | 10.1016/S0736-5748(99)00094-5 |