Loading…

Immobilization of phenol in cement-based solidified/stabilized hazardous wastes using regenerated activated carbon: role of carbon

The use of regenerated activated carbon as an immobilizing additive for phenol in solidification/stabilization (S/S) processes was investigated. The adsorption capacity of regenerated carbon was compared to that of the virgin form and was found to be very close. The effects of pH and Ca(OH) 2 concen...

Full description

Saved in:
Bibliographic Details
Published in:Journal of hazardous materials 1999-12, Vol.70 (3), p.139-156
Main Authors: Arafat, Hassan A, Hebatpuria, Vikram M, Rho, Hong Sang, Pinto, Neville G, Bishop, Paul L, Buchanan, Relva C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The use of regenerated activated carbon as an immobilizing additive for phenol in solidification/stabilization (S/S) processes was investigated. The adsorption capacity of regenerated carbon was compared to that of the virgin form and was found to be very close. The effects of pH and Ca(OH) 2 concentration within the S/S monolith on the adsorption process were also examined. Kinetic tests were performed to evaluate the adsorption of phenol on different forms of F400 carbon, including the regenerated form. Kinetic tests were performed in aqueous solutions as well as in liquid–sand mixtures. In both cases, it was found that phenol adsorption on F400 carbon was fairly fast. More than 60% of the equilibrium adsorption amount could be achieved within the first hour for aqueous solutions. For sand-solution kinetics, it was found that 1% carbon (based on dry sand weight) was capable of achieving more than 95% removal of the initial amount of phenol present in solution (1000 and 5000 ppm). Fourier transform infrared (FT-IR) spectroscopy and X-ray mapping tests indicated a homogenous mixing of the carbon into the cement matrix. The carbon was also found to enhance the hydration of cement, which was retarded by the existence of phenol.
ISSN:0304-3894
1873-3336
DOI:10.1016/S0304-3894(99)00127-2