Loading…
Synergistic depletion of astrocytic glutathione by glucose deprivation and peroxynitrite : Correlation with mitochondrial dysfunction and subsequent cell death
Previously we reported that immunostimulated astrocytes were highly vulnerable to glucose deprivation. The augmented death was mimicked by the peroxynitrite (ONOO )-producing reagent 3-morpholinosydnonimine (SIN-1). Here we show that glucose deprivation and ONOO- synergistically deplete intracellula...
Saved in:
Published in: | Journal of neurochemistry 2000-05, Vol.74 (5), p.1989-1998 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Previously we reported that immunostimulated astrocytes were highly vulnerable to glucose deprivation. The augmented death was mimicked by the peroxynitrite (ONOO )-producing reagent 3-morpholinosydnonimine (SIN-1). Here we show that glucose deprivation and ONOO- synergistically deplete intracellular reduced glutathione (GSH) and augment the death of astrocytes via formation of cyclosporin A-sensitive mitochondrial permeability transition (MPT) pore. Astrocytic GSH levels were only slightly decreased by glucose deprivation or SIN-1 (200 microM) alone. In contrast, a rapid and large depletion of GSH was observed in glucose-deprived/ SIN-1-treated astrocytes. The depletion of GSH occurred before a significant release of lactate dehydrogenase (a marker of cell death). Superoxide dismutase and ONOO-scavengers completely blocked the augmented death, indicating that the reaction of nitric oxide with superoxide to form ONOO was implicated. Furthermore, nitrotyrosine immunoreactivity (a marker of ONOO-) was markedly enhanced in glucose-deprived/SIN-1 -treated astrocytes. Mitochondrial transmembrane potential (MTP) was synergistically decreased in glucose-deprived/SIN-1-treated astrocytes. The glutathione synthase inhibitor L-buthionine-(S,R)-sulfoximine markedly decreased the MTP and increased lactate dehydrogenase (LDH) releases in SIN-1-treated astrocytes. Cyclosporin A, an MPT pore blocker, completely prevented the MTP depolarization as well as the enhanced LDH releases in glucose-deprived/SIN-1-treated astrocytes. |
---|---|
ISSN: | 0022-3042 1471-4159 |
DOI: | 10.1046/j.1471-4159.2000.0741989.x |