Loading…

Ethanol potentiates HIV-1 gp120-induced apoptosis in human neurons via both the death receptor and NMDA receptor pathways

Neuronal loss is a hallmark of AIDS dementia syndromes. Human immunodeficiency virus type I (HIV-1)-specific proteins may induce neuronal apoptosis, but the signal transduction of HIV-1 gp120-induced, direct neuronal apoptosis remains unclear. Ethanol (EtOH) is considered to be an environmental co-f...

Full description

Saved in:
Bibliographic Details
Published in:Virology (New York, N.Y.) N.Y.), 2005-03, Vol.334 (1), p.59-73
Main Authors: Chen, Wei, Tang, Zhonghua, Fortina, Paolo, Patel, Pritesh, Addya, Sankar, Surrey, Saul, Acheampong, Edward A., Mukhtar, Muhammad, Pomerantz, Roger J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Neuronal loss is a hallmark of AIDS dementia syndromes. Human immunodeficiency virus type I (HIV-1)-specific proteins may induce neuronal apoptosis, but the signal transduction of HIV-1 gp120-induced, direct neuronal apoptosis remains unclear. Ethanol (EtOH) is considered to be an environmental co-factor in AIDS development. However, whether EtOH abuse in patients with AIDS increases neuronal dysfunction is still uncertain. Using pure, differentiated, and post-mitotic NT2.N-derived human neurons, we investigated the mechanisms of HIV-1 and/or EtOH-related direct neuronal injury and the molecular interactions between HIV-1-specific proteins and EtOH. It was demonstrated that NT2.N neurons were susceptible to HIV-1 Bal (R5-tropic strain) gp120-induced direct cell death. Of importance, EtOH induced cell death in human neurons in a clinically-relevant dose range and EtOH strongly potentiated HIV-1 gp120-induced neuronal injury at low and moderate concentrations. Furthermore, this potentiation of neurotoxicity could be blocked by N-methyl- d-aspartate (NMDA) receptor subunit 2B (NR2B) antagonists. We analyzed human genomic profiles in these human neurons, using Affymetrix genomics technology, to elucidate the apoptotic pathways involved in HIV-1- and EtOH-related neurodegeneration. Our findings indicated significant over-expression of selected apoptosis functional genes. Significant up-regulation of TRAF5 gene expression may play an essential role in triggering potentiation by EtOH of HIV-1 gp120-induced neuronal apoptosis at early stages of interaction. These studies suggested that two primary apoptotic pathways, death receptor (extrinsic) and NMDA receptor (intrinsic)-related programmed cell-death pathways, are both involved in the potentiation by EtOH of HIV-1 gp120-induced direct human neuronal death. Thus, these data suggest rationally-designed, molecular targets for potential anti-HIV-1 neuroprotection.
ISSN:0042-6822
1096-0341
DOI:10.1016/j.virol.2005.01.014