Loading…

Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device

Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a t...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2013-12, Vol.13 (12), p.5771-5776
Main Authors: Anand, Benoy, Podila, Ramakrishna, Lingam, Kiran, Krishnan, S. R, Siva Sankara Sai, S, Philip, Reji, Rao, Apparao M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233
cites cdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233
container_end_page 5776
container_issue 12
container_start_page 5771
container_title Nano letters
container_volume 13
creator Anand, Benoy
Podila, Ramakrishna
Lingam, Kiran
Krishnan, S. R
Siva Sankara Sai, S
Philip, Reji
Rao, Apparao M
description Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.
doi_str_mv 10.1021/nl403366d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753475559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753475559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</originalsourceid><addsrcrecordid>eNqF0E1LwzAYwPEgipvTg19AchH0UE2alzbHsvkGogd3lZKmCWSkyUw6cd_eDud2EYRAcvg9T-APwDlGNxjl-NY7igjhvD0AY8wIyrgQ-eHuXdIROElpgRAShKFjMMppntOS4zF4f132VkkHZza0Glaqt8FDE0MHqy8rnVvDKq27TvfRKvgSvLNey2j7NbQeSg8r57KpjM0w9RacbbO3XvYazvSnVfoUHBnpkj7b3hMwv7-bTx-z59eHp2n1nElSlH3GCW-RaFplKOKGFZQgQQXGOqdNU5JcorIomZG05UghirnhrcTDEYaSnJAJuPpZu4zhY6VTX3c2Ke2c9DqsUo0LRmjBGBP_U8oLTlhBNvT6h6oYUora1MtoOxnXNUb1pnu96z7Yi-3aVdPpdid_Qw_gcgtkGnKbKL2yae9KxAvCxd5JlepFWEU_dPvjw29iIpRe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467635739</pqid></control><display><type>article</type><title>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Anand, Benoy ; Podila, Ramakrishna ; Lingam, Kiran ; Krishnan, S. R ; Siva Sankara Sai, S ; Philip, Reji ; Rao, Apparao M</creator><creatorcontrib>Anand, Benoy ; Podila, Ramakrishna ; Lingam, Kiran ; Krishnan, S. R ; Siva Sankara Sai, S ; Philip, Reji ; Rao, Apparao M</creatorcontrib><description>Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl403366d</identifier><identifier>PMID: 24224861</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Absorption ; Asymmetry ; Buckminsterfullerene ; Carbon ; Carbon - chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diodes ; Exact sciences and technology ; Fullerenes ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Graphite - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanostructure ; Nanostructures - chemistry ; Nanotubes, Carbon - chemistry ; Nonlinearity ; Optics and Photonics ; Physics ; Silicon - chemistry ; Specific materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Nano letters, 2013-12, Vol.13 (12), p.5771-5776</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</citedby><cites>FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=28067369$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24224861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anand, Benoy</creatorcontrib><creatorcontrib>Podila, Ramakrishna</creatorcontrib><creatorcontrib>Lingam, Kiran</creatorcontrib><creatorcontrib>Krishnan, S. R</creatorcontrib><creatorcontrib>Siva Sankara Sai, S</creatorcontrib><creatorcontrib>Philip, Reji</creatorcontrib><creatorcontrib>Rao, Apparao M</creatorcontrib><title>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.</description><subject>Absorption</subject><subject>Asymmetry</subject><subject>Buckminsterfullerene</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diodes</subject><subject>Exact sciences and technology</subject><subject>Fullerenes</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nonlinearity</subject><subject>Optics and Photonics</subject><subject>Physics</subject><subject>Silicon - chemistry</subject><subject>Specific materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAYwPEgipvTg19AchH0UE2alzbHsvkGogd3lZKmCWSkyUw6cd_eDud2EYRAcvg9T-APwDlGNxjl-NY7igjhvD0AY8wIyrgQ-eHuXdIROElpgRAShKFjMMppntOS4zF4f132VkkHZza0Glaqt8FDE0MHqy8rnVvDKq27TvfRKvgSvLNey2j7NbQeSg8r57KpjM0w9RacbbO3XvYazvSnVfoUHBnpkj7b3hMwv7-bTx-z59eHp2n1nElSlH3GCW-RaFplKOKGFZQgQQXGOqdNU5JcorIomZG05UghirnhrcTDEYaSnJAJuPpZu4zhY6VTX3c2Ke2c9DqsUo0LRmjBGBP_U8oLTlhBNvT6h6oYUora1MtoOxnXNUb1pnu96z7Yi-3aVdPpdid_Qw_gcgtkGnKbKL2yae9KxAvCxd5JlepFWEU_dPvjw29iIpRe</recordid><startdate>20131211</startdate><enddate>20131211</enddate><creator>Anand, Benoy</creator><creator>Podila, Ramakrishna</creator><creator>Lingam, Kiran</creator><creator>Krishnan, S. R</creator><creator>Siva Sankara Sai, S</creator><creator>Philip, Reji</creator><creator>Rao, Apparao M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131211</creationdate><title>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</title><author>Anand, Benoy ; Podila, Ramakrishna ; Lingam, Kiran ; Krishnan, S. R ; Siva Sankara Sai, S ; Philip, Reji ; Rao, Apparao M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Absorption</topic><topic>Asymmetry</topic><topic>Buckminsterfullerene</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diodes</topic><topic>Exact sciences and technology</topic><topic>Fullerenes</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nonlinearity</topic><topic>Optics and Photonics</topic><topic>Physics</topic><topic>Silicon - chemistry</topic><topic>Specific materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Benoy</creatorcontrib><creatorcontrib>Podila, Ramakrishna</creatorcontrib><creatorcontrib>Lingam, Kiran</creatorcontrib><creatorcontrib>Krishnan, S. R</creatorcontrib><creatorcontrib>Siva Sankara Sai, S</creatorcontrib><creatorcontrib>Philip, Reji</creatorcontrib><creatorcontrib>Rao, Apparao M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Benoy</au><au>Podila, Ramakrishna</au><au>Lingam, Kiran</au><au>Krishnan, S. R</au><au>Siva Sankara Sai, S</au><au>Philip, Reji</au><au>Rao, Apparao M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-12-11</date><risdate>2013</risdate><volume>13</volume><issue>12</issue><spage>5771</spage><epage>5776</epage><pages>5771-5776</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24224861</pmid><doi>10.1021/nl403366d</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2013-12, Vol.13 (12), p.5771-5776
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1753475559
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Absorption
Asymmetry
Buckminsterfullerene
Carbon
Carbon - chemistry
Condensed matter: structure, mechanical and thermal properties
Cross-disciplinary physics: materials science
rheology
Diodes
Exact sciences and technology
Fullerenes
Fullerenes and related materials
diamonds, graphite
Graphene
Graphite - chemistry
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Nanostructure
Nanostructures - chemistry
Nanotubes, Carbon - chemistry
Nonlinearity
Optics and Photonics
Physics
Silicon - chemistry
Specific materials
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Thermal properties of condensed matter
Thermal properties of small particles, nanocrystals, nanotubes
title Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Diode%20Action%20from%20Axially%20Asymmetric%20Nonlinearity%20in%20an%20All-Carbon%20Solid-State%20Device&rft.jtitle=Nano%20letters&rft.au=Anand,%20Benoy&rft.date=2013-12-11&rft.volume=13&rft.issue=12&rft.spage=5771&rft.epage=5776&rft.pages=5771-5776&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl403366d&rft_dat=%3Cproquest_cross%3E1753475559%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1467635739&rft_id=info:pmid/24224861&rfr_iscdi=true