Loading…
Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device
Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a t...
Saved in:
Published in: | Nano letters 2013-12, Vol.13 (12), p.5771-5776 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233 |
---|---|
cites | cdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233 |
container_end_page | 5776 |
container_issue | 12 |
container_start_page | 5771 |
container_title | Nano letters |
container_volume | 13 |
creator | Anand, Benoy Podila, Ramakrishna Lingam, Kiran Krishnan, S. R Siva Sankara Sai, S Philip, Reji Rao, Apparao M |
description | Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies. |
doi_str_mv | 10.1021/nl403366d |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753475559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753475559</sourcerecordid><originalsourceid>FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</originalsourceid><addsrcrecordid>eNqF0E1LwzAYwPEgipvTg19AchH0UE2alzbHsvkGogd3lZKmCWSkyUw6cd_eDud2EYRAcvg9T-APwDlGNxjl-NY7igjhvD0AY8wIyrgQ-eHuXdIROElpgRAShKFjMMppntOS4zF4f132VkkHZza0Glaqt8FDE0MHqy8rnVvDKq27TvfRKvgSvLNey2j7NbQeSg8r57KpjM0w9RacbbO3XvYazvSnVfoUHBnpkj7b3hMwv7-bTx-z59eHp2n1nElSlH3GCW-RaFplKOKGFZQgQQXGOqdNU5JcorIomZG05UghirnhrcTDEYaSnJAJuPpZu4zhY6VTX3c2Ke2c9DqsUo0LRmjBGBP_U8oLTlhBNvT6h6oYUora1MtoOxnXNUb1pnu96z7Yi-3aVdPpdid_Qw_gcgtkGnKbKL2yae9KxAvCxd5JlepFWEU_dPvjw29iIpRe</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1467635739</pqid></control><display><type>article</type><title>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Anand, Benoy ; Podila, Ramakrishna ; Lingam, Kiran ; Krishnan, S. R ; Siva Sankara Sai, S ; Philip, Reji ; Rao, Apparao M</creator><creatorcontrib>Anand, Benoy ; Podila, Ramakrishna ; Lingam, Kiran ; Krishnan, S. R ; Siva Sankara Sai, S ; Philip, Reji ; Rao, Apparao M</creatorcontrib><description>Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl403366d</identifier><identifier>PMID: 24224861</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Absorption ; Asymmetry ; Buckminsterfullerene ; Carbon ; Carbon - chemistry ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Diodes ; Exact sciences and technology ; Fullerenes ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Graphite - chemistry ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanostructure ; Nanostructures - chemistry ; Nanotubes, Carbon - chemistry ; Nonlinearity ; Optics and Photonics ; Physics ; Silicon - chemistry ; Specific materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Thermal properties of condensed matter ; Thermal properties of small particles, nanocrystals, nanotubes</subject><ispartof>Nano letters, 2013-12, Vol.13 (12), p.5771-5776</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</citedby><cites>FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28067369$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24224861$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anand, Benoy</creatorcontrib><creatorcontrib>Podila, Ramakrishna</creatorcontrib><creatorcontrib>Lingam, Kiran</creatorcontrib><creatorcontrib>Krishnan, S. R</creatorcontrib><creatorcontrib>Siva Sankara Sai, S</creatorcontrib><creatorcontrib>Philip, Reji</creatorcontrib><creatorcontrib>Rao, Apparao M</creatorcontrib><title>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.</description><subject>Absorption</subject><subject>Asymmetry</subject><subject>Buckminsterfullerene</subject><subject>Carbon</subject><subject>Carbon - chemistry</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Diodes</subject><subject>Exact sciences and technology</subject><subject>Fullerenes</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Graphite - chemistry</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanostructure</subject><subject>Nanostructures - chemistry</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nonlinearity</subject><subject>Optics and Photonics</subject><subject>Physics</subject><subject>Silicon - chemistry</subject><subject>Specific materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Thermal properties of condensed matter</subject><subject>Thermal properties of small particles, nanocrystals, nanotubes</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqF0E1LwzAYwPEgipvTg19AchH0UE2alzbHsvkGogd3lZKmCWSkyUw6cd_eDud2EYRAcvg9T-APwDlGNxjl-NY7igjhvD0AY8wIyrgQ-eHuXdIROElpgRAShKFjMMppntOS4zF4f132VkkHZza0Glaqt8FDE0MHqy8rnVvDKq27TvfRKvgSvLNey2j7NbQeSg8r57KpjM0w9RacbbO3XvYazvSnVfoUHBnpkj7b3hMwv7-bTx-z59eHp2n1nElSlH3GCW-RaFplKOKGFZQgQQXGOqdNU5JcorIomZG05UghirnhrcTDEYaSnJAJuPpZu4zhY6VTX3c2Ke2c9DqsUo0LRmjBGBP_U8oLTlhBNvT6h6oYUora1MtoOxnXNUb1pnu96z7Yi-3aVdPpdid_Qw_gcgtkGnKbKL2yae9KxAvCxd5JlepFWEU_dPvjw29iIpRe</recordid><startdate>20131211</startdate><enddate>20131211</enddate><creator>Anand, Benoy</creator><creator>Podila, Ramakrishna</creator><creator>Lingam, Kiran</creator><creator>Krishnan, S. R</creator><creator>Siva Sankara Sai, S</creator><creator>Philip, Reji</creator><creator>Rao, Apparao M</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20131211</creationdate><title>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</title><author>Anand, Benoy ; Podila, Ramakrishna ; Lingam, Kiran ; Krishnan, S. R ; Siva Sankara Sai, S ; Philip, Reji ; Rao, Apparao M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Absorption</topic><topic>Asymmetry</topic><topic>Buckminsterfullerene</topic><topic>Carbon</topic><topic>Carbon - chemistry</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Diodes</topic><topic>Exact sciences and technology</topic><topic>Fullerenes</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Graphite - chemistry</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanostructure</topic><topic>Nanostructures - chemistry</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nonlinearity</topic><topic>Optics and Photonics</topic><topic>Physics</topic><topic>Silicon - chemistry</topic><topic>Specific materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Thermal properties of condensed matter</topic><topic>Thermal properties of small particles, nanocrystals, nanotubes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anand, Benoy</creatorcontrib><creatorcontrib>Podila, Ramakrishna</creatorcontrib><creatorcontrib>Lingam, Kiran</creatorcontrib><creatorcontrib>Krishnan, S. R</creatorcontrib><creatorcontrib>Siva Sankara Sai, S</creatorcontrib><creatorcontrib>Philip, Reji</creatorcontrib><creatorcontrib>Rao, Apparao M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anand, Benoy</au><au>Podila, Ramakrishna</au><au>Lingam, Kiran</au><au>Krishnan, S. R</au><au>Siva Sankara Sai, S</au><au>Philip, Reji</au><au>Rao, Apparao M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-12-11</date><risdate>2013</risdate><volume>13</volume><issue>12</issue><spage>5771</spage><epage>5776</epage><pages>5771-5776</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>Nanostructured carbons are posited to offer an alternative to silicon and lead to further miniaturization of photonic and electronic devices. Here, we report the experimental realization of the first all-carbon solid-state optical diode that is based on axially asymmetric nonlinear absorption in a thin saturable absorber (graphene) and a thin reverse saturable absorber (C60) arranged in tandem. This all-optical diode action is polarization independent and has no phase-matching constraints. The nonreciprocity factor of the device can be tuned by varying the number of graphene layers and the concentration or thickness of the C60 coating. This ultracompact graphene/C60 based optical diode is versatile with an inherently large bandwidth, chemical and thermal stability, and is poised for cost-effective large-scale integration with existing fabrication technologies.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24224861</pmid><doi>10.1021/nl403366d</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2013-12, Vol.13 (12), p.5771-5776 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753475559 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Absorption Asymmetry Buckminsterfullerene Carbon Carbon - chemistry Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Diodes Exact sciences and technology Fullerenes Fullerenes and related materials diamonds, graphite Graphene Graphite - chemistry Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Nanostructure Nanostructures - chemistry Nanotubes, Carbon - chemistry Nonlinearity Optics and Photonics Physics Silicon - chemistry Specific materials Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) Thermal properties of condensed matter Thermal properties of small particles, nanocrystals, nanotubes |
title | Optical Diode Action from Axially Asymmetric Nonlinearity in an All-Carbon Solid-State Device |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T11%3A54%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Optical%20Diode%20Action%20from%20Axially%20Asymmetric%20Nonlinearity%20in%20an%20All-Carbon%20Solid-State%20Device&rft.jtitle=Nano%20letters&rft.au=Anand,%20Benoy&rft.date=2013-12-11&rft.volume=13&rft.issue=12&rft.spage=5771&rft.epage=5776&rft.pages=5771-5776&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl403366d&rft_dat=%3Cproquest_cross%3E1753475559%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a378t-636d09bdcf406f5743094911e24bb832a08785fa4d60c0416f6da1da19f43233%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1467635739&rft_id=info:pmid/24224861&rfr_iscdi=true |