Loading…
Plasmon-Induced Transparency in the Visible Region via Self-Assembled Gold Nanorod Heterodimers
The phenomenon of plasmon-induced transparency holds immense potential for high sensitivity sensors and optical information processing due to the extreme dispersion and slowing of light within a narrow spectral window. Unfortunately plasmonic metamaterials demonstrating this effect has been restrict...
Saved in:
Published in: | Nano letters 2013-12, Vol.13 (12), p.6287-6291 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The phenomenon of plasmon-induced transparency holds immense potential for high sensitivity sensors and optical information processing due to the extreme dispersion and slowing of light within a narrow spectral window. Unfortunately plasmonic metamaterials demonstrating this effect has been restricted to infrared and greater wavelengths due to requisite precision in structure fabrication. Here we report a novel metamaterial synthesized by bottom-up self-assembly of gold nanorods. The small dimensions (≤50/20 nm, length/diameter), atomically smooth surfaces, and nanometer resolution enable the first demonstration of plasmon-induced transparency at visible wavelengths. The slow-down factors within the reduced symmetry heterodimer cluster are comparable to longer wavelength counterparts. The inherent spectral tunability and facile large-scale integration afforded by self-assembled metamaterials will open a new paradigm for physically realizable on-chip photonic device designs. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl403911z |