Loading…

Validated Method for the Quantification of Free and Total Carnitine, Butyrobetaine, and Acylcarnitines in Biological Samples

A validated quantitative method for the determination of free and total carnitine, butyrobetaine, and acylcarnitines is presented. The versatile method has four components: (1) isolation using strong cation-exchange solid-phase extraction, (2) derivatization with pentafluorophenacyl trifluoromethane...

Full description

Saved in:
Bibliographic Details
Published in:Analytical chemistry (Washington) 2015-09, Vol.87 (17), p.8994-9001
Main Authors: Minkler, Paul E, Stoll, Maria S. K, Ingalls, Stephen T, Kerner, Janos, Hoppel, Charles L
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A validated quantitative method for the determination of free and total carnitine, butyrobetaine, and acylcarnitines is presented. The versatile method has four components: (1) isolation using strong cation-exchange solid-phase extraction, (2) derivatization with pentafluorophenacyl trifluoromethanesulfonate, (3) sequential ion-exchange/reversed-phase (ultra) high-performance liquid chromatography [(U)­HPLC] using a strong cation-exchange trap in series with a fused-core HPLC column, and (4) detection with electrospray ionization multiple reaction monitoring (MRM) mass spectrometry (MS). Standardized carnitine along with 65 synthesized, standardized acylcarnitines (including short-chain, medium-chain, long-chain, dicarboxylic, hydroxylated, and unsaturated acyl moieties) were used to construct multiple-point calibration curves, resulting in accurate and precise quantification. Separation of the 65 acylcarnitines was accomplished in a single chromatogram in as little as 14 min. Validation studies were performed showing a high level of accuracy, precision, and reproducibility. The method provides capabilities unavailable by tandem MS procedures, making it an ideal approach for confirmation of newborn screening results and for clinical and basic research projects, including treatment protocol studies, acylcarnitine biomarker studies, and metabolite studies using plasma, urine, tissue, or other sample matrixes.
ISSN:0003-2700
1520-6882
DOI:10.1021/acs.analchem.5b02198