Loading…
Propagation of singularities along characteristics of Maxwell's equations
We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is sho...
Saved in:
Published in: | Physica scripta 2014-06, Vol.89 (6), p.65203-13 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673 |
---|---|
cites | cdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673 |
container_end_page | 13 |
container_issue | 6 |
container_start_page | 65203 |
container_title | Physica scripta |
container_volume | 89 |
creator | Barletta, Elisabetta Dragomir, Sorin |
description | We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable. |
doi_str_mv | 10.1088/0031-8949/89/6/065203 |
format | article |
fullrecord | <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753481967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753481967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUjZwSZk_KhjL1HFo1IRLGBtDY5TXKVxaicC_p60RWzZzN2cM5q5hFxSuKGgVAHAaa600IXShSxAzhjwIzKhAlgulJbHZPLHnJKzlNYATDKpJ2TxEkOHK-x9aLNQZ8m3q6HB6HvvUoZNaFeZ_cCItnfRp97btMOe8OvTNc1Vytx22MvpnJzU2CR38ZtT8nZ_9zp_zJfPD4v57TK3nKk-19RhVakKHJsxpqxQ-I5SOyFL0LZiAEIqy7mFkjOEStSSO16XAnEMWfIpuT7s7WLYDi71ZuOTHY_B1oUhGVrOuFBU79HZAbUxpBRdbbroNxi_DQWzq87sajG7WsZhpDlUN3r04PnQmXUYYjs-9I_zA8_4cMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753481967</pqid></control><display><type>article</type><title>Propagation of singularities along characteristics of Maxwell's equations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Barletta, Elisabetta ; Dragomir, Sorin</creator><creatorcontrib>Barletta, Elisabetta ; Dragomir, Sorin</creatorcontrib><description>We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/0031-8949/89/6/065203</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Byproducts ; characteristic hypersurface ; Derivatives ; Electromagnetic waves ; generalized solution ; Geometry ; Initial value problems ; Maxwell's equations ; Singularities ; Wave propagation</subject><ispartof>Physica scripta, 2014-06, Vol.89 (6), p.65203-13</ispartof><rights>2014 The Royal Swedish Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</citedby><cites>FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Barletta, Elisabetta</creatorcontrib><creatorcontrib>Dragomir, Sorin</creatorcontrib><title>Propagation of singularities along characteristics of Maxwell's equations</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable.</description><subject>Byproducts</subject><subject>characteristic hypersurface</subject><subject>Derivatives</subject><subject>Electromagnetic waves</subject><subject>generalized solution</subject><subject>Geometry</subject><subject>Initial value problems</subject><subject>Maxwell's equations</subject><subject>Singularities</subject><subject>Wave propagation</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUjZwSZk_KhjL1HFo1IRLGBtDY5TXKVxaicC_p60RWzZzN2cM5q5hFxSuKGgVAHAaa600IXShSxAzhjwIzKhAlgulJbHZPLHnJKzlNYATDKpJ2TxEkOHK-x9aLNQZ8m3q6HB6HvvUoZNaFeZ_cCItnfRp97btMOe8OvTNc1Vytx22MvpnJzU2CR38ZtT8nZ_9zp_zJfPD4v57TK3nKk-19RhVakKHJsxpqxQ-I5SOyFL0LZiAEIqy7mFkjOEStSSO16XAnEMWfIpuT7s7WLYDi71ZuOTHY_B1oUhGVrOuFBU79HZAbUxpBRdbbroNxi_DQWzq87sajG7WsZhpDlUN3r04PnQmXUYYjs-9I_zA8_4cMQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Barletta, Elisabetta</creator><creator>Dragomir, Sorin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Propagation of singularities along characteristics of Maxwell's equations</title><author>Barletta, Elisabetta ; Dragomir, Sorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Byproducts</topic><topic>characteristic hypersurface</topic><topic>Derivatives</topic><topic>Electromagnetic waves</topic><topic>generalized solution</topic><topic>Geometry</topic><topic>Initial value problems</topic><topic>Maxwell's equations</topic><topic>Singularities</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barletta, Elisabetta</creatorcontrib><creatorcontrib>Dragomir, Sorin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barletta, Elisabetta</au><au>Dragomir, Sorin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of singularities along characteristics of Maxwell's equations</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>89</volume><issue>6</issue><spage>65203</spage><epage>13</epage><pages>65203-13</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable.</abstract><pub>IOP Publishing</pub><doi>10.1088/0031-8949/89/6/065203</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8949 |
ispartof | Physica scripta, 2014-06, Vol.89 (6), p.65203-13 |
issn | 0031-8949 1402-4896 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753481967 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Byproducts characteristic hypersurface Derivatives Electromagnetic waves generalized solution Geometry Initial value problems Maxwell's equations Singularities Wave propagation |
title | Propagation of singularities along characteristics of Maxwell's equations |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20singularities%20along%20characteristics%20of%20Maxwell's%20equations&rft.jtitle=Physica%20scripta&rft.au=Barletta,%20Elisabetta&rft.date=2014-06-01&rft.volume=89&rft.issue=6&rft.spage=65203&rft.epage=13&rft.pages=65203-13&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/0031-8949/89/6/065203&rft_dat=%3Cproquest_iop_j%3E1753481967%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753481967&rft_id=info:pmid/&rfr_iscdi=true |