Loading…

Propagation of singularities along characteristics of Maxwell's equations

We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is sho...

Full description

Saved in:
Bibliographic Details
Published in:Physica scripta 2014-06, Vol.89 (6), p.65203-13
Main Authors: Barletta, Elisabetta, Dragomir, Sorin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673
cites cdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673
container_end_page 13
container_issue 6
container_start_page 65203
container_title Physica scripta
container_volume 89
creator Barletta, Elisabetta
Dragomir, Sorin
description We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable.
doi_str_mv 10.1088/0031-8949/89/6/065203
format article
fullrecord <record><control><sourceid>proquest_iop_j</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753481967</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753481967</sourcerecordid><originalsourceid>FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</originalsourceid><addsrcrecordid>eNqFkMtOwzAQRS0EEqXwCUjZwSZk_KhjL1HFo1IRLGBtDY5TXKVxaicC_p60RWzZzN2cM5q5hFxSuKGgVAHAaa600IXShSxAzhjwIzKhAlgulJbHZPLHnJKzlNYATDKpJ2TxEkOHK-x9aLNQZ8m3q6HB6HvvUoZNaFeZ_cCItnfRp97btMOe8OvTNc1Vytx22MvpnJzU2CR38ZtT8nZ_9zp_zJfPD4v57TK3nKk-19RhVakKHJsxpqxQ-I5SOyFL0LZiAEIqy7mFkjOEStSSO16XAnEMWfIpuT7s7WLYDi71ZuOTHY_B1oUhGVrOuFBU79HZAbUxpBRdbbroNxi_DQWzq87sajG7WsZhpDlUN3r04PnQmXUYYjs-9I_zA8_4cMQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753481967</pqid></control><display><type>article</type><title>Propagation of singularities along characteristics of Maxwell's equations</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Barletta, Elisabetta ; Dragomir, Sorin</creator><creatorcontrib>Barletta, Elisabetta ; Dragomir, Sorin</creatorcontrib><description>We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable.</description><identifier>ISSN: 0031-8949</identifier><identifier>EISSN: 1402-4896</identifier><identifier>DOI: 10.1088/0031-8949/89/6/065203</identifier><identifier>CODEN: PHSTBO</identifier><language>eng</language><publisher>IOP Publishing</publisher><subject>Byproducts ; characteristic hypersurface ; Derivatives ; Electromagnetic waves ; generalized solution ; Geometry ; Initial value problems ; Maxwell's equations ; Singularities ; Wave propagation</subject><ispartof>Physica scripta, 2014-06, Vol.89 (6), p.65203-13</ispartof><rights>2014 The Royal Swedish Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</citedby><cites>FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Barletta, Elisabetta</creatorcontrib><creatorcontrib>Dragomir, Sorin</creatorcontrib><title>Propagation of singularities along characteristics of Maxwell's equations</title><title>Physica scripta</title><addtitle>PS</addtitle><addtitle>Phys. Scr</addtitle><description>We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable.</description><subject>Byproducts</subject><subject>characteristic hypersurface</subject><subject>Derivatives</subject><subject>Electromagnetic waves</subject><subject>generalized solution</subject><subject>Geometry</subject><subject>Initial value problems</subject><subject>Maxwell's equations</subject><subject>Singularities</subject><subject>Wave propagation</subject><issn>0031-8949</issn><issn>1402-4896</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkMtOwzAQRS0EEqXwCUjZwSZk_KhjL1HFo1IRLGBtDY5TXKVxaicC_p60RWzZzN2cM5q5hFxSuKGgVAHAaa600IXShSxAzhjwIzKhAlgulJbHZPLHnJKzlNYATDKpJ2TxEkOHK-x9aLNQZ8m3q6HB6HvvUoZNaFeZ_cCItnfRp97btMOe8OvTNc1Vytx22MvpnJzU2CR38ZtT8nZ_9zp_zJfPD4v57TK3nKk-19RhVakKHJsxpqxQ-I5SOyFL0LZiAEIqy7mFkjOEStSSO16XAnEMWfIpuT7s7WLYDi71ZuOTHY_B1oUhGVrOuFBU79HZAbUxpBRdbbroNxi_DQWzq87sajG7WsZhpDlUN3r04PnQmXUYYjs-9I_zA8_4cMQ</recordid><startdate>20140601</startdate><enddate>20140601</enddate><creator>Barletta, Elisabetta</creator><creator>Dragomir, Sorin</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20140601</creationdate><title>Propagation of singularities along characteristics of Maxwell's equations</title><author>Barletta, Elisabetta ; Dragomir, Sorin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Byproducts</topic><topic>characteristic hypersurface</topic><topic>Derivatives</topic><topic>Electromagnetic waves</topic><topic>generalized solution</topic><topic>Geometry</topic><topic>Initial value problems</topic><topic>Maxwell's equations</topic><topic>Singularities</topic><topic>Wave propagation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barletta, Elisabetta</creatorcontrib><creatorcontrib>Dragomir, Sorin</creatorcontrib><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physica scripta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barletta, Elisabetta</au><au>Dragomir, Sorin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Propagation of singularities along characteristics of Maxwell's equations</atitle><jtitle>Physica scripta</jtitle><stitle>PS</stitle><addtitle>Phys. Scr</addtitle><date>2014-06-01</date><risdate>2014</risdate><volume>89</volume><issue>6</issue><spage>65203</spage><epage>13</epage><pages>65203-13</pages><issn>0031-8949</issn><eissn>1402-4896</eissn><coden>PHSTBO</coden><abstract>We give a new proof that electromagnetic waves predict geometry, based on studying the propagation of singularities in first-order derivatives of generalized solutions to Maxwell's equations. As a byproduct, the growth of the intensity of the jumps in across a characteristic hypersurface is shown to be homogeneous of degree . We determine generalized solutions (whose first-order derivatives have jumps across a fixed characteristic line) to the initial value problem for Maxwell's equations in one space variable.</abstract><pub>IOP Publishing</pub><doi>10.1088/0031-8949/89/6/065203</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-8949
ispartof Physica scripta, 2014-06, Vol.89 (6), p.65203-13
issn 0031-8949
1402-4896
language eng
recordid cdi_proquest_miscellaneous_1753481967
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Byproducts
characteristic hypersurface
Derivatives
Electromagnetic waves
generalized solution
Geometry
Initial value problems
Maxwell's equations
Singularities
Wave propagation
title Propagation of singularities along characteristics of Maxwell's equations
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T11%3A05%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_iop_j&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Propagation%20of%20singularities%20along%20characteristics%20of%20Maxwell's%20equations&rft.jtitle=Physica%20scripta&rft.au=Barletta,%20Elisabetta&rft.date=2014-06-01&rft.volume=89&rft.issue=6&rft.spage=65203&rft.epage=13&rft.pages=65203-13&rft.issn=0031-8949&rft.eissn=1402-4896&rft.coden=PHSTBO&rft_id=info:doi/10.1088/0031-8949/89/6/065203&rft_dat=%3Cproquest_iop_j%3E1753481967%3C/proquest_iop_j%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c328t-91eadd8d0e25228c48aba69e46709cd200468c33c0732a0d4f63e3f74aae3f673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753481967&rft_id=info:pmid/&rfr_iscdi=true