Loading…

Modification of Electrical Properties of Graphene by Substrate-Induced Nanomodulation

A periodically modulated graphene (PMG) generated by nanopatterned surfaces is reported to profoundly modify the intrinsic electronic properties of graphene. The temperature dependence of the sheet resistivity and gate response measurements clearly show a semiconductor-like behavior. Raman spectrosc...

Full description

Saved in:
Bibliographic Details
Published in:Nano letters 2013-08, Vol.13 (8), p.3494-3500
Main Authors: Lee, Jong-Kwon, Yamazaki, Shiro, Yun, Hoyeol, Park, Jinwoo, Kennedy, Gary P, Kim, Gyu-Tae, Pietzsch, Oswald, Wiesendanger, Roland, Lee, SangWook, Hong, Suklyun, Dettlaff-Weglikowska, Urszula, Roth, Siegmar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a444t-6ee275a7d175a5f7ca1d77f64a81d04f145905461f0dd672af62c08577887cf73
cites cdi_FETCH-LOGICAL-a444t-6ee275a7d175a5f7ca1d77f64a81d04f145905461f0dd672af62c08577887cf73
container_end_page 3500
container_issue 8
container_start_page 3494
container_title Nano letters
container_volume 13
creator Lee, Jong-Kwon
Yamazaki, Shiro
Yun, Hoyeol
Park, Jinwoo
Kennedy, Gary P
Kim, Gyu-Tae
Pietzsch, Oswald
Wiesendanger, Roland
Lee, SangWook
Hong, Suklyun
Dettlaff-Weglikowska, Urszula
Roth, Siegmar
description A periodically modulated graphene (PMG) generated by nanopatterned surfaces is reported to profoundly modify the intrinsic electronic properties of graphene. The temperature dependence of the sheet resistivity and gate response measurements clearly show a semiconductor-like behavior. Raman spectroscopy reveals significant shifts of the G and the 2D modes induced by the interaction with the underlying grid-like nanostructure. The influence of the periodic, alternating contact with the substrate surface was studied in terms of strain caused by bending of graphene and doping through chemical interactions with underlying substrate atoms. Electronic structure calculations performed on a model of PMG reveals that it is possible to tune a band gap within 0.14–0.19 eV by considering both the periodic mechanical bending and the surface coordination chemistry. Therefore, the PMG can be regarded as a further step toward band gap engineering of graphene devices.
doi_str_mv 10.1021/nl400827p
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753482024</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753482024</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-6ee275a7d175a5f7ca1d77f64a81d04f145905461f0dd672af62c08577887cf73</originalsourceid><addsrcrecordid>eNqFkE1LwzAYgIMobk4P_gHpRdBDNUnz1aOMOQfzA3TnkuUDO9qmJu1h_97MzelB8JI3JA_PCw8A5wjeIIjRbVMRCAXm7QEYIprBlOU5PtzfBRmAkxBWEMI8o_AYDHAmiKCIDcHi0enSlkp2pWsSZ5NJZVTn40OVvHjXGt-VJmw-pl6276YxyXKdvPbL0HnZmXTW6F4ZnTzJxtVO99WX6BQcWVkFc7abI7C4n7yNH9L583Q2vpunkhDSpcwYzKnkGsWTWq4k0pxbRqRAGhKLCM0hJQxZqDXjWFqGFRSUcyG4sjwbgautt_XuozehK-oyKFNVsjGuD0X0ZkRgiMn_KIkQpjjfWK-3qPIuBG9s0fqyln5dIFhsghf74JG92Gn7ZW30nvwuHIHLHSBDjGq9bFQZfjjOWJaxX5xUoVi53jcx3B8LPwGuCZM6</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1424325297</pqid></control><display><type>article</type><title>Modification of Electrical Properties of Graphene by Substrate-Induced Nanomodulation</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Lee, Jong-Kwon ; Yamazaki, Shiro ; Yun, Hoyeol ; Park, Jinwoo ; Kennedy, Gary P ; Kim, Gyu-Tae ; Pietzsch, Oswald ; Wiesendanger, Roland ; Lee, SangWook ; Hong, Suklyun ; Dettlaff-Weglikowska, Urszula ; Roth, Siegmar</creator><creatorcontrib>Lee, Jong-Kwon ; Yamazaki, Shiro ; Yun, Hoyeol ; Park, Jinwoo ; Kennedy, Gary P ; Kim, Gyu-Tae ; Pietzsch, Oswald ; Wiesendanger, Roland ; Lee, SangWook ; Hong, Suklyun ; Dettlaff-Weglikowska, Urszula ; Roth, Siegmar</creatorcontrib><description>A periodically modulated graphene (PMG) generated by nanopatterned surfaces is reported to profoundly modify the intrinsic electronic properties of graphene. The temperature dependence of the sheet resistivity and gate response measurements clearly show a semiconductor-like behavior. Raman spectroscopy reveals significant shifts of the G and the 2D modes induced by the interaction with the underlying grid-like nanostructure. The influence of the periodic, alternating contact with the substrate surface was studied in terms of strain caused by bending of graphene and doping through chemical interactions with underlying substrate atoms. Electronic structure calculations performed on a model of PMG reveals that it is possible to tune a band gap within 0.14–0.19 eV by considering both the periodic mechanical bending and the surface coordination chemistry. Therefore, the PMG can be regarded as a further step toward band gap engineering of graphene devices.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl400827p</identifier><identifier>PMID: 23848516</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Banded structure ; Bending ; Condensed matter: electronic structure, electrical, magnetic, and optical properties ; Condensed matter: structure, mechanical and thermal properties ; Contact ; Cross-disciplinary physics: materials science; rheology ; Electrical properties ; Electrical resistivity ; Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems ; Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures ; Exact sciences and technology ; Fullerenes and related materials; diamonds, graphite ; Graphene ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Methods of nanofabrication ; Nanoscale pattern formation ; Nanostructure ; Physics ; Specific materials ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties) ; Temperature dependence</subject><ispartof>Nano letters, 2013-08, Vol.13 (8), p.3494-3500</ispartof><rights>Copyright © 2013 American Chemical Society</rights><rights>2014 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-6ee275a7d175a5f7ca1d77f64a81d04f145905461f0dd672af62c08577887cf73</citedby><cites>FETCH-LOGICAL-a444t-6ee275a7d175a5f7ca1d77f64a81d04f145905461f0dd672af62c08577887cf73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=27663366$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/23848516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Jong-Kwon</creatorcontrib><creatorcontrib>Yamazaki, Shiro</creatorcontrib><creatorcontrib>Yun, Hoyeol</creatorcontrib><creatorcontrib>Park, Jinwoo</creatorcontrib><creatorcontrib>Kennedy, Gary P</creatorcontrib><creatorcontrib>Kim, Gyu-Tae</creatorcontrib><creatorcontrib>Pietzsch, Oswald</creatorcontrib><creatorcontrib>Wiesendanger, Roland</creatorcontrib><creatorcontrib>Lee, SangWook</creatorcontrib><creatorcontrib>Hong, Suklyun</creatorcontrib><creatorcontrib>Dettlaff-Weglikowska, Urszula</creatorcontrib><creatorcontrib>Roth, Siegmar</creatorcontrib><title>Modification of Electrical Properties of Graphene by Substrate-Induced Nanomodulation</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>A periodically modulated graphene (PMG) generated by nanopatterned surfaces is reported to profoundly modify the intrinsic electronic properties of graphene. The temperature dependence of the sheet resistivity and gate response measurements clearly show a semiconductor-like behavior. Raman spectroscopy reveals significant shifts of the G and the 2D modes induced by the interaction with the underlying grid-like nanostructure. The influence of the periodic, alternating contact with the substrate surface was studied in terms of strain caused by bending of graphene and doping through chemical interactions with underlying substrate atoms. Electronic structure calculations performed on a model of PMG reveals that it is possible to tune a band gap within 0.14–0.19 eV by considering both the periodic mechanical bending and the surface coordination chemistry. Therefore, the PMG can be regarded as a further step toward band gap engineering of graphene devices.</description><subject>Banded structure</subject><subject>Bending</subject><subject>Condensed matter: electronic structure, electrical, magnetic, and optical properties</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Contact</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Electrical properties</subject><subject>Electrical resistivity</subject><subject>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</subject><subject>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</subject><subject>Exact sciences and technology</subject><subject>Fullerenes and related materials; diamonds, graphite</subject><subject>Graphene</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Methods of nanofabrication</subject><subject>Nanoscale pattern formation</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Specific materials</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><subject>Temperature dependence</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LwzAYgIMobk4P_gHpRdBDNUnz1aOMOQfzA3TnkuUDO9qmJu1h_97MzelB8JI3JA_PCw8A5wjeIIjRbVMRCAXm7QEYIprBlOU5PtzfBRmAkxBWEMI8o_AYDHAmiKCIDcHi0enSlkp2pWsSZ5NJZVTn40OVvHjXGt-VJmw-pl6276YxyXKdvPbL0HnZmXTW6F4ZnTzJxtVO99WX6BQcWVkFc7abI7C4n7yNH9L583Q2vpunkhDSpcwYzKnkGsWTWq4k0pxbRqRAGhKLCM0hJQxZqDXjWFqGFRSUcyG4sjwbgautt_XuozehK-oyKFNVsjGuD0X0ZkRgiMn_KIkQpjjfWK-3qPIuBG9s0fqyln5dIFhsghf74JG92Gn7ZW30nvwuHIHLHSBDjGq9bFQZfjjOWJaxX5xUoVi53jcx3B8LPwGuCZM6</recordid><startdate>20130814</startdate><enddate>20130814</enddate><creator>Lee, Jong-Kwon</creator><creator>Yamazaki, Shiro</creator><creator>Yun, Hoyeol</creator><creator>Park, Jinwoo</creator><creator>Kennedy, Gary P</creator><creator>Kim, Gyu-Tae</creator><creator>Pietzsch, Oswald</creator><creator>Wiesendanger, Roland</creator><creator>Lee, SangWook</creator><creator>Hong, Suklyun</creator><creator>Dettlaff-Weglikowska, Urszula</creator><creator>Roth, Siegmar</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20130814</creationdate><title>Modification of Electrical Properties of Graphene by Substrate-Induced Nanomodulation</title><author>Lee, Jong-Kwon ; Yamazaki, Shiro ; Yun, Hoyeol ; Park, Jinwoo ; Kennedy, Gary P ; Kim, Gyu-Tae ; Pietzsch, Oswald ; Wiesendanger, Roland ; Lee, SangWook ; Hong, Suklyun ; Dettlaff-Weglikowska, Urszula ; Roth, Siegmar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-6ee275a7d175a5f7ca1d77f64a81d04f145905461f0dd672af62c08577887cf73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Banded structure</topic><topic>Bending</topic><topic>Condensed matter: electronic structure, electrical, magnetic, and optical properties</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Contact</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Electrical properties</topic><topic>Electrical resistivity</topic><topic>Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems</topic><topic>Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures</topic><topic>Exact sciences and technology</topic><topic>Fullerenes and related materials; diamonds, graphite</topic><topic>Graphene</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Methods of nanofabrication</topic><topic>Nanoscale pattern formation</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Specific materials</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><topic>Temperature dependence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Jong-Kwon</creatorcontrib><creatorcontrib>Yamazaki, Shiro</creatorcontrib><creatorcontrib>Yun, Hoyeol</creatorcontrib><creatorcontrib>Park, Jinwoo</creatorcontrib><creatorcontrib>Kennedy, Gary P</creatorcontrib><creatorcontrib>Kim, Gyu-Tae</creatorcontrib><creatorcontrib>Pietzsch, Oswald</creatorcontrib><creatorcontrib>Wiesendanger, Roland</creatorcontrib><creatorcontrib>Lee, SangWook</creatorcontrib><creatorcontrib>Hong, Suklyun</creatorcontrib><creatorcontrib>Dettlaff-Weglikowska, Urszula</creatorcontrib><creatorcontrib>Roth, Siegmar</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Jong-Kwon</au><au>Yamazaki, Shiro</au><au>Yun, Hoyeol</au><au>Park, Jinwoo</au><au>Kennedy, Gary P</au><au>Kim, Gyu-Tae</au><au>Pietzsch, Oswald</au><au>Wiesendanger, Roland</au><au>Lee, SangWook</au><au>Hong, Suklyun</au><au>Dettlaff-Weglikowska, Urszula</au><au>Roth, Siegmar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modification of Electrical Properties of Graphene by Substrate-Induced Nanomodulation</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2013-08-14</date><risdate>2013</risdate><volume>13</volume><issue>8</issue><spage>3494</spage><epage>3500</epage><pages>3494-3500</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>A periodically modulated graphene (PMG) generated by nanopatterned surfaces is reported to profoundly modify the intrinsic electronic properties of graphene. The temperature dependence of the sheet resistivity and gate response measurements clearly show a semiconductor-like behavior. Raman spectroscopy reveals significant shifts of the G and the 2D modes induced by the interaction with the underlying grid-like nanostructure. The influence of the periodic, alternating contact with the substrate surface was studied in terms of strain caused by bending of graphene and doping through chemical interactions with underlying substrate atoms. Electronic structure calculations performed on a model of PMG reveals that it is possible to tune a band gap within 0.14–0.19 eV by considering both the periodic mechanical bending and the surface coordination chemistry. Therefore, the PMG can be regarded as a further step toward band gap engineering of graphene devices.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>23848516</pmid><doi>10.1021/nl400827p</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1530-6984
ispartof Nano letters, 2013-08, Vol.13 (8), p.3494-3500
issn 1530-6984
1530-6992
language eng
recordid cdi_proquest_miscellaneous_1753482024
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Banded structure
Bending
Condensed matter: electronic structure, electrical, magnetic, and optical properties
Condensed matter: structure, mechanical and thermal properties
Contact
Cross-disciplinary physics: materials science
rheology
Electrical properties
Electrical resistivity
Electron states and collective excitations in thin films, multilayers, quantum wells, mesoscopic and nanoscale systems
Electronic structure and electrical properties of surfaces, interfaces, thin films and low-dimensional structures
Exact sciences and technology
Fullerenes and related materials
diamonds, graphite
Graphene
Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties
Materials science
Methods of nanofabrication
Nanoscale pattern formation
Nanostructure
Physics
Specific materials
Surfaces and interfaces
thin films and whiskers (structure and nonelectronic properties)
Temperature dependence
title Modification of Electrical Properties of Graphene by Substrate-Induced Nanomodulation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A57%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modification%20of%20Electrical%20Properties%20of%20Graphene%20by%20Substrate-Induced%20Nanomodulation&rft.jtitle=Nano%20letters&rft.au=Lee,%20Jong-Kwon&rft.date=2013-08-14&rft.volume=13&rft.issue=8&rft.spage=3494&rft.epage=3500&rft.pages=3494-3500&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl400827p&rft_dat=%3Cproquest_cross%3E1753482024%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-6ee275a7d175a5f7ca1d77f64a81d04f145905461f0dd672af62c08577887cf73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1424325297&rft_id=info:pmid/23848516&rfr_iscdi=true