Loading…
Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk
We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10–20 nm range and with narrow size distributions of 7–11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in...
Saved in:
Published in: | Nano letters 2014-03, Vol.14 (3), p.1255-1262 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a444t-c206f88ae394b58001664a8dd484cfeb3c80f5e76859557637db5d4f4ec2a3853 |
---|---|
cites | cdi_FETCH-LOGICAL-a444t-c206f88ae394b58001664a8dd484cfeb3c80f5e76859557637db5d4f4ec2a3853 |
container_end_page | 1262 |
container_issue | 3 |
container_start_page | 1255 |
container_title | Nano letters |
container_volume | 14 |
creator | He, Meng Kravchyk, Kostiantyn Walter, Marc Kovalenko, Maksym V |
description | We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10–20 nm range and with narrow size distributions of 7–11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in rechargeable Li-ion and Na-ion batteries. All three particle sizes of Sb possess high and similar Li-ion and Na-ion charge storage capacities of 580–640 mAh g–1 at moderate charging/discharging current densities of 0.5–1C (1C-rate is 660 mA g–1). At all C-rates (0.5–20C, e.g. current densities of 0.33–13.2 Ag1–), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78–85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage. |
doi_str_mv | 10.1021/nl404165c |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753483676</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753483676</sourcerecordid><originalsourceid>FETCH-LOGICAL-a444t-c206f88ae394b58001664a8dd484cfeb3c80f5e76859557637db5d4f4ec2a3853</originalsourceid><addsrcrecordid>eNqFkT1PwzAURS0EoqUw8AeQFyQYAnb8EYetrYAiFZAQzJHjOJCS2sVOkPLvcT9oFyQmv-Hc46f7ADjF6AqjGF-bmiKKOVN7oI8ZQRFP03h_OwvaA0fezxBCKWHoEPRiSgWlKO0D9WiNLSq_0M5rODRNNbemg0_SWOU638jaw9I6OKneP6IX2Wg4raLKGihNEajVOJJNo10X0rbQ_mYVht9B2Ho4auvPY3BQBo8-2bwD8HZ3-zqeRNPn-4fxcBpJSmkTqRjxUgipSUpzJhDCnFMpiiLsqkqdEyVQyXTCBUsZSzhJipwVtKRaxZIIRgbgYu1dOPvVat9k88orXdfSaNv6DCeMUEF4iP6LMpRgkYp0ab1co8pZ750us4Wr5tJ1GUbZsv5sW39gzzbaNp_rYkv-9h2A8w0gvZJ16aRRld9xYTsSzrTjpPLZzLbOhOL--PAHncKXOA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1507189895</pqid></control><display><type>article</type><title>Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>He, Meng ; Kravchyk, Kostiantyn ; Walter, Marc ; Kovalenko, Maksym V</creator><creatorcontrib>He, Meng ; Kravchyk, Kostiantyn ; Walter, Marc ; Kovalenko, Maksym V</creatorcontrib><description>We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10–20 nm range and with narrow size distributions of 7–11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in rechargeable Li-ion and Na-ion batteries. All three particle sizes of Sb possess high and similar Li-ion and Na-ion charge storage capacities of 580–640 mAh g–1 at moderate charging/discharging current densities of 0.5–1C (1C-rate is 660 mA g–1). At all C-rates (0.5–20C, e.g. current densities of 0.33–13.2 Ag1–), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78–85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage.</description><identifier>ISSN: 1530-6984</identifier><identifier>EISSN: 1530-6992</identifier><identifier>DOI: 10.1021/nl404165c</identifier><identifier>PMID: 24484409</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Anodes ; Antimony ; Charge ; Charge density ; Condensed matter: structure, mechanical and thermal properties ; Cross-disciplinary physics: materials science; rheology ; Current density ; Exact sciences and technology ; Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties ; Materials science ; Nanocrystalline materials ; Nanocrystals ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; Physics ; Storage capacity ; Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><ispartof>Nano letters, 2014-03, Vol.14 (3), p.1255-1262</ispartof><rights>Copyright © 2014 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a444t-c206f88ae394b58001664a8dd484cfeb3c80f5e76859557637db5d4f4ec2a3853</citedby><cites>FETCH-LOGICAL-a444t-c206f88ae394b58001664a8dd484cfeb3c80f5e76859557637db5d4f4ec2a3853</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28363000$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24484409$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>He, Meng</creatorcontrib><creatorcontrib>Kravchyk, Kostiantyn</creatorcontrib><creatorcontrib>Walter, Marc</creatorcontrib><creatorcontrib>Kovalenko, Maksym V</creatorcontrib><title>Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk</title><title>Nano letters</title><addtitle>Nano Lett</addtitle><description>We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10–20 nm range and with narrow size distributions of 7–11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in rechargeable Li-ion and Na-ion batteries. All three particle sizes of Sb possess high and similar Li-ion and Na-ion charge storage capacities of 580–640 mAh g–1 at moderate charging/discharging current densities of 0.5–1C (1C-rate is 660 mA g–1). At all C-rates (0.5–20C, e.g. current densities of 0.33–13.2 Ag1–), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78–85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage.</description><subject>Anodes</subject><subject>Antimony</subject><subject>Charge</subject><subject>Charge density</subject><subject>Condensed matter: structure, mechanical and thermal properties</subject><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Current density</subject><subject>Exact sciences and technology</subject><subject>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</subject><subject>Materials science</subject><subject>Nanocrystalline materials</subject><subject>Nanocrystals</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>Physics</subject><subject>Storage capacity</subject><subject>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</subject><issn>1530-6984</issn><issn>1530-6992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAURS0EoqUw8AeQFyQYAnb8EYetrYAiFZAQzJHjOJCS2sVOkPLvcT9oFyQmv-Hc46f7ADjF6AqjGF-bmiKKOVN7oI8ZQRFP03h_OwvaA0fezxBCKWHoEPRiSgWlKO0D9WiNLSq_0M5rODRNNbemg0_SWOU638jaw9I6OKneP6IX2Wg4raLKGihNEajVOJJNo10X0rbQ_mYVht9B2Ho4auvPY3BQBo8-2bwD8HZ3-zqeRNPn-4fxcBpJSmkTqRjxUgipSUpzJhDCnFMpiiLsqkqdEyVQyXTCBUsZSzhJipwVtKRaxZIIRgbgYu1dOPvVat9k88orXdfSaNv6DCeMUEF4iP6LMpRgkYp0ab1co8pZ750us4Wr5tJ1GUbZsv5sW39gzzbaNp_rYkv-9h2A8w0gvZJ16aRRld9xYTsSzrTjpPLZzLbOhOL--PAHncKXOA</recordid><startdate>20140312</startdate><enddate>20140312</enddate><creator>He, Meng</creator><creator>Kravchyk, Kostiantyn</creator><creator>Walter, Marc</creator><creator>Kovalenko, Maksym V</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20140312</creationdate><title>Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk</title><author>He, Meng ; Kravchyk, Kostiantyn ; Walter, Marc ; Kovalenko, Maksym V</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a444t-c206f88ae394b58001664a8dd484cfeb3c80f5e76859557637db5d4f4ec2a3853</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Anodes</topic><topic>Antimony</topic><topic>Charge</topic><topic>Charge density</topic><topic>Condensed matter: structure, mechanical and thermal properties</topic><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Current density</topic><topic>Exact sciences and technology</topic><topic>Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties</topic><topic>Materials science</topic><topic>Nanocrystalline materials</topic><topic>Nanocrystals</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>Physics</topic><topic>Storage capacity</topic><topic>Surfaces and interfaces; thin films and whiskers (structure and nonelectronic properties)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>He, Meng</creatorcontrib><creatorcontrib>Kravchyk, Kostiantyn</creatorcontrib><creatorcontrib>Walter, Marc</creatorcontrib><creatorcontrib>Kovalenko, Maksym V</creatorcontrib><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nano letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>He, Meng</au><au>Kravchyk, Kostiantyn</au><au>Walter, Marc</au><au>Kovalenko, Maksym V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk</atitle><jtitle>Nano letters</jtitle><addtitle>Nano Lett</addtitle><date>2014-03-12</date><risdate>2014</risdate><volume>14</volume><issue>3</issue><spage>1255</spage><epage>1262</epage><pages>1255-1262</pages><issn>1530-6984</issn><eissn>1530-6992</eissn><abstract>We report colloidal synthesis of antimony (Sb) nanocrystals with mean size tunable in the 10–20 nm range and with narrow size distributions of 7–11%. In comparison to microcrystalline Sb, 10 and 20 nm Sb nanocrystals exhibit enhanced rate-capability and higher cycling stability as anode materials in rechargeable Li-ion and Na-ion batteries. All three particle sizes of Sb possess high and similar Li-ion and Na-ion charge storage capacities of 580–640 mAh g–1 at moderate charging/discharging current densities of 0.5–1C (1C-rate is 660 mA g–1). At all C-rates (0.5–20C, e.g. current densities of 0.33–13.2 Ag1–), capacities of 20 nm Sb particles are systematically better than for both 10 nm and bulk Sb. At 20C-rates, retention of charge storage capacities by 10 and 20 nm Sb nanocrystals can reach 78–85% of the low-rate value, indicating that rate capability of Sb nanostructures can be comparable to the best Li-ion intercalation anodes and is so far unprecedented for Na-ion storage.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>24484409</pmid><doi>10.1021/nl404165c</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1530-6984 |
ispartof | Nano letters, 2014-03, Vol.14 (3), p.1255-1262 |
issn | 1530-6984 1530-6992 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753483676 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | Anodes Antimony Charge Charge density Condensed matter: structure, mechanical and thermal properties Cross-disciplinary physics: materials science rheology Current density Exact sciences and technology Low-dimensional structures (superlattices, quantum well structures, multilayers): structure, and nonelectronic properties Materials science Nanocrystalline materials Nanocrystals Nanoscale materials and structures: fabrication and characterization Nanostructure Physics Storage capacity Surfaces and interfaces thin films and whiskers (structure and nonelectronic properties) |
title | Monodisperse Antimony Nanocrystals for High-Rate Li-ion and Na-ion Battery Anodes: Nano versus Bulk |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T19%3A23%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Monodisperse%20Antimony%20Nanocrystals%20for%20High-Rate%20Li-ion%20and%20Na-ion%20Battery%20Anodes:%20Nano%20versus%20Bulk&rft.jtitle=Nano%20letters&rft.au=He,%20Meng&rft.date=2014-03-12&rft.volume=14&rft.issue=3&rft.spage=1255&rft.epage=1262&rft.pages=1255-1262&rft.issn=1530-6984&rft.eissn=1530-6992&rft_id=info:doi/10.1021/nl404165c&rft_dat=%3Cproquest_cross%3E1753483676%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a444t-c206f88ae394b58001664a8dd484cfeb3c80f5e76859557637db5d4f4ec2a3853%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1507189895&rft_id=info:pmid/24484409&rfr_iscdi=true |