Loading…
Molecular Logic Computation with Debugging Method
Seesaw gate concept, which is based on a reversible DNA strand branch process, has been found to have the potential to be used in the construction of various computing devices. In this study, we consider constructing full adder and serial binary adder, using the new concept of seesaw gate. Our simul...
Saved in:
Published in: | Journal of nanomaterials 2015-01, Vol.2015 (2015), p.1-11 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Seesaw gate concept, which is based on a reversible DNA strand branch process, has been found to have the potential to be used in the construction of various computing devices. In this study, we consider constructing full adder and serial binary adder, using the new concept of seesaw gate. Our simulation of the full adder preformed properly as designed; however unexpected exception is noted in the simulation of the serial binary adder. To identify and address the exception, we propose a new method for debugging the molecular circuit. The main idea for this method is to add fan-outs to monitor the circuit in a reverse stepwise manner. These fan-outs are fluorescent signals that can obtain the real-time concentration of the target molecule. By analyzing the monitoring result, the exception can be identified and located. In this paper, examples of XOR and serial binary adder circuits are described to prove the practicability and validity of the molecular circuit debugging method. |
---|---|
ISSN: | 1687-4110 1687-4129 |
DOI: | 10.1155/2015/120365 |