Loading…

Optimization of highly nonlinear dispersion-flattened photonic crystal fiber for supercontinuum generation

A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefri...

Full description

Saved in:
Bibliographic Details
Published in:Chinese physics B 2013, Vol.22 (1), p.298-302
Main Author: 张亚妮
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A simple type of photonic crystal fiber (PCF) for supercontinuum generation is proposed for the first time. The proposed PCF is composed of a solid silica core and a cladding with square lattice uniform elliptical air holes, which offers not only a large nonlinear coefficient but also a high birefringence and low leakage losses. The PCF with nonlinear coefficient as large as 46 W-1 · km-1 at the wavelength of 1.55 um and a total dispersion as low as ±2.5 ps. nm-1 · km -1 over an ultra-broad waveband range of the S-C-L band (wavelength from 1.46 um to 1.625 um) is optimized by adjusting its structure parameter, such as the lattice constant A, the air-filling fraction f, and the air-hole ellipticity η. The novel PCF with ultra-flattened dispersion, highly nonlinear coefficient, and nearly zero negative dispersion slope will offer a possibility of efficient super-continuum generation in telecommunication windows using a few ps pulses.
ISSN:1674-1056
2058-3834
1741-4199
DOI:10.1088/1674-1056/22/1/014214