Loading…

Acceleration of Feynman loop integrals in high-energy physics on many core GPUs

The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical c...

Full description

Saved in:
Bibliographic Details
Published in:Journal of physics. Conference series 2013-08, Vol.454 (1), p.12081-7
Main Authors: Yuasa, F, Ishikawa, T, Hamaguchi, N, Koike, T, Nakasato, N
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73
cites cdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73
container_end_page 7
container_issue 1
container_start_page 12081
container_title Journal of physics. Conference series
container_volume 454
creator Yuasa, F
Ishikawa, T
Hamaguchi, N
Koike, T
Nakasato, N
description The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards.
doi_str_mv 10.1088/1742-6596/454/1/012081
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753500764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753500764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKd_QQLeeFN78tGkvRzDTWEwL9x1SNN06-iamnQX_femTEQMhLyQ5xzOeRB6JPBCIM9TIjlNRFaIlGc8JSkQCjm5QrPfj-s_-RbdhXAEYPHIGdoujLGt9XpoXIddjVd27E66w61zPW66we69bkNM-NDsD4ntrN-PuD-MoTEBx5oIj9g4b_H6Yxfu0U0defvw887RbvX6uXxLNtv1-3KxSQxnMCQUoJBsutwKDoxqW1Q6K01d0TIXwAzwUktmc1oWJGMZFXGBwvCK6NIYyebo-dK39-7rbMOgTk2Im7S6s-4cFJGxCEAKHtGnf-jRnX0Xp1M0kzLjBIiIlLhQxrsQvK1V75uT9qMioCbPalKoJoUqelZEXTyzb95IbrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577541016</pqid></control><display><type>article</type><title>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Yuasa, F ; Ishikawa, T ; Hamaguchi, N ; Koike, T ; Nakasato, N</creator><creatorcontrib>Yuasa, F ; Ishikawa, T ; Hamaguchi, N ; Koike, T ; Nakasato, N</creatorcontrib><description>The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/454/1/012081</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acceleration ; Boards ; Computation ; Cross sections (physics) ; Extrapolation ; High energy physics ; Integrals ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Numerical integration ; Numerical methods ; Parameters ; Physics ; Topology</subject><ispartof>Journal of physics. Conference series, 2013-08, Vol.454 (1), p.12081-7</ispartof><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</citedby><cites>FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2577541016?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>Yuasa, F</creatorcontrib><creatorcontrib>Ishikawa, T</creatorcontrib><creatorcontrib>Hamaguchi, N</creatorcontrib><creatorcontrib>Koike, T</creatorcontrib><creatorcontrib>Nakasato, N</creatorcontrib><title>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</title><title>Journal of physics. Conference series</title><description>The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards.</description><subject>Acceleration</subject><subject>Boards</subject><subject>Computation</subject><subject>Cross sections (physics)</subject><subject>Extrapolation</subject><subject>High energy physics</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical integration</subject><subject>Numerical methods</subject><subject>Parameters</subject><subject>Physics</subject><subject>Topology</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkF1LwzAUhoMoOKd_QQLeeFN78tGkvRzDTWEwL9x1SNN06-iamnQX_femTEQMhLyQ5xzOeRB6JPBCIM9TIjlNRFaIlGc8JSkQCjm5QrPfj-s_-RbdhXAEYPHIGdoujLGt9XpoXIddjVd27E66w61zPW66we69bkNM-NDsD4ntrN-PuD-MoTEBx5oIj9g4b_H6Yxfu0U0defvw887RbvX6uXxLNtv1-3KxSQxnMCQUoJBsutwKDoxqW1Q6K01d0TIXwAzwUktmc1oWJGMZFXGBwvCK6NIYyebo-dK39-7rbMOgTk2Im7S6s-4cFJGxCEAKHtGnf-jRnX0Xp1M0kzLjBIiIlLhQxrsQvK1V75uT9qMioCbPalKoJoUqelZEXTyzb95IbrQ</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Yuasa, F</creator><creator>Ishikawa, T</creator><creator>Hamaguchi, N</creator><creator>Koike, T</creator><creator>Nakasato, N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20130812</creationdate><title>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</title><author>Yuasa, F ; Ishikawa, T ; Hamaguchi, N ; Koike, T ; Nakasato, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Boards</topic><topic>Computation</topic><topic>Cross sections (physics)</topic><topic>Extrapolation</topic><topic>High energy physics</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical integration</topic><topic>Numerical methods</topic><topic>Parameters</topic><topic>Physics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuasa, F</creatorcontrib><creatorcontrib>Ishikawa, T</creatorcontrib><creatorcontrib>Hamaguchi, N</creatorcontrib><creatorcontrib>Koike, T</creatorcontrib><creatorcontrib>Nakasato, N</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuasa, F</au><au>Ishikawa, T</au><au>Hamaguchi, N</au><au>Koike, T</au><au>Nakasato, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2013-08-12</date><risdate>2013</risdate><volume>454</volume><issue>1</issue><spage>12081</spage><epage>7</epage><pages>12081-7</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/454/1/012081</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1742-6596
ispartof Journal of physics. Conference series, 2013-08, Vol.454 (1), p.12081-7
issn 1742-6596
1742-6588
1742-6596
language eng
recordid cdi_proquest_miscellaneous_1753500764
source Publicly Available Content Database; Free Full-Text Journals in Chemistry
subjects Acceleration
Boards
Computation
Cross sections (physics)
Extrapolation
High energy physics
Integrals
Mathematical analysis
Mathematical models
Numerical analysis
Numerical integration
Numerical methods
Parameters
Physics
Topology
title Acceleration of Feynman loop integrals in high-energy physics on many core GPUs
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20Feynman%20loop%20integrals%20in%20high-energy%20physics%20on%20many%20core%20GPUs&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Yuasa,%20F&rft.date=2013-08-12&rft.volume=454&rft.issue=1&rft.spage=12081&rft.epage=7&rft.pages=12081-7&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/454/1/012081&rft_dat=%3Cproquest_cross%3E1753500764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577541016&rft_id=info:pmid/&rfr_iscdi=true