Loading…
Acceleration of Feynman loop integrals in high-energy physics on many core GPUs
The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical c...
Saved in:
Published in: | Journal of physics. Conference series 2013-08, Vol.454 (1), p.12081-7 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73 |
---|---|
cites | cdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73 |
container_end_page | 7 |
container_issue | 1 |
container_start_page | 12081 |
container_title | Journal of physics. Conference series |
container_volume | 454 |
creator | Yuasa, F Ishikawa, T Hamaguchi, N Koike, T Nakasato, N |
description | The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards. |
doi_str_mv | 10.1088/1742-6596/454/1/012081 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753500764</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753500764</sourcerecordid><originalsourceid>FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</originalsourceid><addsrcrecordid>eNpdkF1LwzAUhoMoOKd_QQLeeFN78tGkvRzDTWEwL9x1SNN06-iamnQX_femTEQMhLyQ5xzOeRB6JPBCIM9TIjlNRFaIlGc8JSkQCjm5QrPfj-s_-RbdhXAEYPHIGdoujLGt9XpoXIddjVd27E66w61zPW66we69bkNM-NDsD4ntrN-PuD-MoTEBx5oIj9g4b_H6Yxfu0U0defvw887RbvX6uXxLNtv1-3KxSQxnMCQUoJBsutwKDoxqW1Q6K01d0TIXwAzwUktmc1oWJGMZFXGBwvCK6NIYyebo-dK39-7rbMOgTk2Im7S6s-4cFJGxCEAKHtGnf-jRnX0Xp1M0kzLjBIiIlLhQxrsQvK1V75uT9qMioCbPalKoJoUqelZEXTyzb95IbrQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2577541016</pqid></control><display><type>article</type><title>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</title><source>Publicly Available Content Database</source><source>Free Full-Text Journals in Chemistry</source><creator>Yuasa, F ; Ishikawa, T ; Hamaguchi, N ; Koike, T ; Nakasato, N</creator><creatorcontrib>Yuasa, F ; Ishikawa, T ; Hamaguchi, N ; Koike, T ; Nakasato, N</creatorcontrib><description>The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards.</description><identifier>ISSN: 1742-6596</identifier><identifier>ISSN: 1742-6588</identifier><identifier>EISSN: 1742-6596</identifier><identifier>DOI: 10.1088/1742-6596/454/1/012081</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Acceleration ; Boards ; Computation ; Cross sections (physics) ; Extrapolation ; High energy physics ; Integrals ; Mathematical analysis ; Mathematical models ; Numerical analysis ; Numerical integration ; Numerical methods ; Parameters ; Physics ; Topology</subject><ispartof>Journal of physics. Conference series, 2013-08, Vol.454 (1), p.12081-7</ispartof><rights>2013. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</citedby><cites>FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2577541016?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>Yuasa, F</creatorcontrib><creatorcontrib>Ishikawa, T</creatorcontrib><creatorcontrib>Hamaguchi, N</creatorcontrib><creatorcontrib>Koike, T</creatorcontrib><creatorcontrib>Nakasato, N</creatorcontrib><title>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</title><title>Journal of physics. Conference series</title><description>The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards.</description><subject>Acceleration</subject><subject>Boards</subject><subject>Computation</subject><subject>Cross sections (physics)</subject><subject>Extrapolation</subject><subject>High energy physics</subject><subject>Integrals</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Numerical analysis</subject><subject>Numerical integration</subject><subject>Numerical methods</subject><subject>Parameters</subject><subject>Physics</subject><subject>Topology</subject><issn>1742-6596</issn><issn>1742-6588</issn><issn>1742-6596</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><recordid>eNpdkF1LwzAUhoMoOKd_QQLeeFN78tGkvRzDTWEwL9x1SNN06-iamnQX_femTEQMhLyQ5xzOeRB6JPBCIM9TIjlNRFaIlGc8JSkQCjm5QrPfj-s_-RbdhXAEYPHIGdoujLGt9XpoXIddjVd27E66w61zPW66we69bkNM-NDsD4ntrN-PuD-MoTEBx5oIj9g4b_H6Yxfu0U0defvw887RbvX6uXxLNtv1-3KxSQxnMCQUoJBsutwKDoxqW1Q6K01d0TIXwAzwUktmc1oWJGMZFXGBwvCK6NIYyebo-dK39-7rbMOgTk2Im7S6s-4cFJGxCEAKHtGnf-jRnX0Xp1M0kzLjBIiIlLhQxrsQvK1V75uT9qMioCbPalKoJoUqelZEXTyzb95IbrQ</recordid><startdate>20130812</startdate><enddate>20130812</enddate><creator>Yuasa, F</creator><creator>Ishikawa, T</creator><creator>Hamaguchi, N</creator><creator>Koike, T</creator><creator>Nakasato, N</creator><general>IOP Publishing</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>HCIFZ</scope><scope>L7M</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>8BQ</scope><scope>JG9</scope></search><sort><creationdate>20130812</creationdate><title>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</title><author>Yuasa, F ; Ishikawa, T ; Hamaguchi, N ; Koike, T ; Nakasato, N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Acceleration</topic><topic>Boards</topic><topic>Computation</topic><topic>Cross sections (physics)</topic><topic>Extrapolation</topic><topic>High energy physics</topic><topic>Integrals</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Numerical analysis</topic><topic>Numerical integration</topic><topic>Numerical methods</topic><topic>Parameters</topic><topic>Physics</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuasa, F</creatorcontrib><creatorcontrib>Ishikawa, T</creatorcontrib><creatorcontrib>Hamaguchi, N</creatorcontrib><creatorcontrib>Koike, T</creatorcontrib><creatorcontrib>Nakasato, N</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Aerospace Database</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Materials Research Database</collection><jtitle>Journal of physics. Conference series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuasa, F</au><au>Ishikawa, T</au><au>Hamaguchi, N</au><au>Koike, T</au><au>Nakasato, N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Acceleration of Feynman loop integrals in high-energy physics on many core GPUs</atitle><jtitle>Journal of physics. Conference series</jtitle><date>2013-08-12</date><risdate>2013</risdate><volume>454</volume><issue>1</issue><spage>12081</spage><epage>7</epage><pages>12081-7</pages><issn>1742-6596</issn><issn>1742-6588</issn><eissn>1742-6596</eissn><abstract>The current and future colliders in high-energy physics require theorists to carry out a large scale computation for a precise comparison between experimental results and theoretical ones. In a perturbative approach several methods to evaluate Feynman loop integrals which appear in the theoretical calculation of cross-sections are well established in the one-loop level, however, more studies are necessary for higher-order levels. Direct Computation Method (DCM) is developed to evaluate multi-loop integrals. DCM is based on a combination of multidimensional numerical integration and extrapolation on a sequence of integrals. It is a fully numerical method and is applicable to a wide class of integrals with various physics parameters. The computation time depends on physics parameters and the topology of loop diagrams and it becomes longer for the two-loop integrals. In this paper we present our approach to the acceleration of the two-loop integrals by DCM on multiple GPU boards.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1742-6596/454/1/012081</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-6596 |
ispartof | Journal of physics. Conference series, 2013-08, Vol.454 (1), p.12081-7 |
issn | 1742-6596 1742-6588 1742-6596 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753500764 |
source | Publicly Available Content Database; Free Full-Text Journals in Chemistry |
subjects | Acceleration Boards Computation Cross sections (physics) Extrapolation High energy physics Integrals Mathematical analysis Mathematical models Numerical analysis Numerical integration Numerical methods Parameters Physics Topology |
title | Acceleration of Feynman loop integrals in high-energy physics on many core GPUs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A58%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Acceleration%20of%20Feynman%20loop%20integrals%20in%20high-energy%20physics%20on%20many%20core%20GPUs&rft.jtitle=Journal%20of%20physics.%20Conference%20series&rft.au=Yuasa,%20F&rft.date=2013-08-12&rft.volume=454&rft.issue=1&rft.spage=12081&rft.epage=7&rft.pages=12081-7&rft.issn=1742-6596&rft.eissn=1742-6596&rft_id=info:doi/10.1088/1742-6596/454/1/012081&rft_dat=%3Cproquest_cross%3E1753500764%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c430t-20097309734e64032ae9da5bcfd2b8603c04ba73e82b91535267429c4d1abcc73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2577541016&rft_id=info:pmid/&rfr_iscdi=true |