Loading…

Time Series Prediction using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm

A multilayer perceptron with backpropagation algorithm (BP) network that has the optimal number of neurons in its hidden layer would be able to predict accurately unknown values of a time series that it is trained with. A model known as K-means-Greedy Algorithm (KGA) model which combines greedy algo...

Full description

Saved in:
Bibliographic Details
Published in:Engineering Letters 2012-09, Vol.20 (3), p.203-210
Main Authors: Tan, J Y B, Bong, D B L, Rigit, A R H
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 210
container_issue 3
container_start_page 203
container_title Engineering Letters
container_volume 20
creator Tan, J Y B
Bong, D B L
Rigit, A R H
description A multilayer perceptron with backpropagation algorithm (BP) network that has the optimal number of neurons in its hidden layer would be able to predict accurately unknown values of a time series that it is trained with. A model known as K-means-Greedy Algorithm (KGA) model which combines greedy algorithm with k-means++ clustering is proposed in this paper to find the optimal number of neurons inside the hidden layer of the BP network. Experiments performed show that the proposed KGA model is effective in finding the optimal number of neurons for the hidden layer of a BP network that is used to perform prediction of unknown values of the Mackey-Glass time series.
format article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753501761</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1753501761</sourcerecordid><originalsourceid>FETCH-LOGICAL-p221t-37f09ab3fb7cabbfffbb52104837fbadd0651c943d6e752034a6ca796d7ef99f3</originalsourceid><addsrcrecordid>eNqFjktLAzEYRbNQsNT-hyzdDCSTySRZ1qKtWKxgBXcljy9j6LxMZpDx1zuoe1cX7j1czgVaUEnLjCj2doVWKQVDikIwrghfIH0MDeAXiAESfo7ggh1C1-IxhbbCt9qe-9j1utI_7RMMn10840M_hCZ8gcNmwrvJxODwY9aAblO2jQBuwuu66mIY3ptrdOl1nWD1l0v0en933Oyy_WH7sFnvsz7P6ZAx4YnShnkjrDbGe28Mzykp5LwY7RwpObWqYK4EwXPCCl1aLVTpBHilPFuim9_fWfhjhDScmpAs1LVuoRvTiQrOOKGipP-js5GUUgnJvgHu8WJS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1221888978</pqid></control><display><type>article</type><title>Time Series Prediction using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm</title><source>ROAD</source><creator>Tan, J Y B ; Bong, D B L ; Rigit, A R H</creator><creatorcontrib>Tan, J Y B ; Bong, D B L ; Rigit, A R H</creatorcontrib><description>A multilayer perceptron with backpropagation algorithm (BP) network that has the optimal number of neurons in its hidden layer would be able to predict accurately unknown values of a time series that it is trained with. A model known as K-means-Greedy Algorithm (KGA) model which combines greedy algorithm with k-means++ clustering is proposed in this paper to find the optimal number of neurons inside the hidden layer of the BP network. Experiments performed show that the proposed KGA model is effective in finding the optimal number of neurons for the hidden layer of a BP network that is used to perform prediction of unknown values of the Mackey-Glass time series.</description><identifier>ISSN: 1816-093X</identifier><language>eng</language><subject>Algorithms ; Back propagation ; Greedy algorithms ; Mathematical models ; Multilayer perceptrons ; Networks ; Neurons ; Optimization ; Time series</subject><ispartof>Engineering Letters, 2012-09, Vol.20 (3), p.203-210</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784</link.rule.ids></links><search><creatorcontrib>Tan, J Y B</creatorcontrib><creatorcontrib>Bong, D B L</creatorcontrib><creatorcontrib>Rigit, A R H</creatorcontrib><title>Time Series Prediction using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm</title><title>Engineering Letters</title><description>A multilayer perceptron with backpropagation algorithm (BP) network that has the optimal number of neurons in its hidden layer would be able to predict accurately unknown values of a time series that it is trained with. A model known as K-means-Greedy Algorithm (KGA) model which combines greedy algorithm with k-means++ clustering is proposed in this paper to find the optimal number of neurons inside the hidden layer of the BP network. Experiments performed show that the proposed KGA model is effective in finding the optimal number of neurons for the hidden layer of a BP network that is used to perform prediction of unknown values of the Mackey-Glass time series.</description><subject>Algorithms</subject><subject>Back propagation</subject><subject>Greedy algorithms</subject><subject>Mathematical models</subject><subject>Multilayer perceptrons</subject><subject>Networks</subject><subject>Neurons</subject><subject>Optimization</subject><subject>Time series</subject><issn>1816-093X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFjktLAzEYRbNQsNT-hyzdDCSTySRZ1qKtWKxgBXcljy9j6LxMZpDx1zuoe1cX7j1czgVaUEnLjCj2doVWKQVDikIwrghfIH0MDeAXiAESfo7ggh1C1-IxhbbCt9qe-9j1utI_7RMMn10840M_hCZ8gcNmwrvJxODwY9aAblO2jQBuwuu66mIY3ptrdOl1nWD1l0v0en933Oyy_WH7sFnvsz7P6ZAx4YnShnkjrDbGe28Mzykp5LwY7RwpObWqYK4EwXPCCl1aLVTpBHilPFuim9_fWfhjhDScmpAs1LVuoRvTiQrOOKGipP-js5GUUgnJvgHu8WJS</recordid><startdate>20120901</startdate><enddate>20120901</enddate><creator>Tan, J Y B</creator><creator>Bong, D B L</creator><creator>Rigit, A R H</creator><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20120901</creationdate><title>Time Series Prediction using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm</title><author>Tan, J Y B ; Bong, D B L ; Rigit, A R H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p221t-37f09ab3fb7cabbfffbb52104837fbadd0651c943d6e752034a6ca796d7ef99f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Algorithms</topic><topic>Back propagation</topic><topic>Greedy algorithms</topic><topic>Mathematical models</topic><topic>Multilayer perceptrons</topic><topic>Networks</topic><topic>Neurons</topic><topic>Optimization</topic><topic>Time series</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, J Y B</creatorcontrib><creatorcontrib>Bong, D B L</creatorcontrib><creatorcontrib>Rigit, A R H</creatorcontrib><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Engineering Letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, J Y B</au><au>Bong, D B L</au><au>Rigit, A R H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Time Series Prediction using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm</atitle><jtitle>Engineering Letters</jtitle><date>2012-09-01</date><risdate>2012</risdate><volume>20</volume><issue>3</issue><spage>203</spage><epage>210</epage><pages>203-210</pages><issn>1816-093X</issn><abstract>A multilayer perceptron with backpropagation algorithm (BP) network that has the optimal number of neurons in its hidden layer would be able to predict accurately unknown values of a time series that it is trained with. A model known as K-means-Greedy Algorithm (KGA) model which combines greedy algorithm with k-means++ clustering is proposed in this paper to find the optimal number of neurons inside the hidden layer of the BP network. Experiments performed show that the proposed KGA model is effective in finding the optimal number of neurons for the hidden layer of a BP network that is used to perform prediction of unknown values of the Mackey-Glass time series.</abstract><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1816-093X
ispartof Engineering Letters, 2012-09, Vol.20 (3), p.203-210
issn 1816-093X
language eng
recordid cdi_proquest_miscellaneous_1753501761
source ROAD
subjects Algorithms
Back propagation
Greedy algorithms
Mathematical models
Multilayer perceptrons
Networks
Neurons
Optimization
Time series
title Time Series Prediction using Backpropagation Network Optimized by Hybrid K-means-Greedy Algorithm
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A37%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Time%20Series%20Prediction%20using%20Backpropagation%20Network%20Optimized%20by%20Hybrid%20K-means-Greedy%20Algorithm&rft.jtitle=Engineering%20Letters&rft.au=Tan,%20J%20Y%20B&rft.date=2012-09-01&rft.volume=20&rft.issue=3&rft.spage=203&rft.epage=210&rft.pages=203-210&rft.issn=1816-093X&rft_id=info:doi/&rft_dat=%3Cproquest%3E1753501761%3C/proquest%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p221t-37f09ab3fb7cabbfffbb52104837fbadd0651c943d6e752034a6ca796d7ef99f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1221888978&rft_id=info:pmid/&rfr_iscdi=true