Loading…

One-dimensional pressure transfer models for acoustic–electric transmission channels

A method for modeling piezoelectric-based ultrasonic acoustic–electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration 2015-09, Vol.352, p.158-173
Main Authors: Wilt, K.R., Lawry, T.J., Scarton, H.A., Saulnier, G.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c363t-be1eb4f65961a7884e6ea0972bf2e9e1cb859636fa07e7b85cc89e01deceafee3
cites cdi_FETCH-LOGICAL-c363t-be1eb4f65961a7884e6ea0972bf2e9e1cb859636fa07e7b85cc89e01deceafee3
container_end_page 173
container_issue
container_start_page 158
container_title Journal of sound and vibration
container_volume 352
creator Wilt, K.R.
Lawry, T.J.
Scarton, H.A.
Saulnier, G.J.
description A method for modeling piezoelectric-based ultrasonic acoustic–electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer׳s adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model׳s electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.
doi_str_mv 10.1016/j.jsv.2015.04.031
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753516292</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022460X15003636</els_id><sourcerecordid>1753516292</sourcerecordid><originalsourceid>FETCH-LOGICAL-c363t-be1eb4f65961a7884e6ea0972bf2e9e1cb859636fa07e7b85cc89e01deceafee3</originalsourceid><addsrcrecordid>eNp9kE1KxEAQhRtRcBw9gLss3SRW56eT4EoG_2BgNirumk6nGjsknbErM-DOO3hDT2IPce2qKOp7xXuPsUsOCQcurruko32SAi8SyBPI-BFbcKiLuCpEdcwWAGka5wLeTtkZUQcAdZ7lC_a6cRi3dkBHdnSqj7YeiXYeo8krRwZ9NIwt9hSZ0UdKjzuarP75-sYe9eStnrnB0kEf6XflXKDP2YlRPeHF31yyl_u759VjvN48PK1u17HORDbFDXJsciOKWnBVVlWOAhXUZdqYFGvkuqnCKRNGQYllWLSuagTeokZlELMlu5r_bv34sUOaZHCise-Vw2BV8rLICi7SOg0on1HtRyKPRm69HZT_lBzkoUPZydChPHQoIZehw6C5mTUhEu4teknaotPYWh_iy3a0_6h_Adr0ff0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1753516292</pqid></control><display><type>article</type><title>One-dimensional pressure transfer models for acoustic–electric transmission channels</title><source>ScienceDirect Journals</source><creator>Wilt, K.R. ; Lawry, T.J. ; Scarton, H.A. ; Saulnier, G.J.</creator><creatorcontrib>Wilt, K.R. ; Lawry, T.J. ; Scarton, H.A. ; Saulnier, G.J.</creatorcontrib><description>A method for modeling piezoelectric-based ultrasonic acoustic–electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer׳s adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model׳s electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.</description><identifier>ISSN: 0022-460X</identifier><identifier>EISSN: 1095-8568</identifier><identifier>DOI: 10.1016/j.jsv.2015.04.031</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Acoustics ; Channels ; Compatibility ; Data transmission ; Mathematical models ; Piezoelectricity ; Pressure waves ; Transducers</subject><ispartof>Journal of sound and vibration, 2015-09, Vol.352, p.158-173</ispartof><rights>2015 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c363t-be1eb4f65961a7884e6ea0972bf2e9e1cb859636fa07e7b85cc89e01deceafee3</citedby><cites>FETCH-LOGICAL-c363t-be1eb4f65961a7884e6ea0972bf2e9e1cb859636fa07e7b85cc89e01deceafee3</cites><orcidid>0000-0001-9532-569X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Wilt, K.R.</creatorcontrib><creatorcontrib>Lawry, T.J.</creatorcontrib><creatorcontrib>Scarton, H.A.</creatorcontrib><creatorcontrib>Saulnier, G.J.</creatorcontrib><title>One-dimensional pressure transfer models for acoustic–electric transmission channels</title><title>Journal of sound and vibration</title><description>A method for modeling piezoelectric-based ultrasonic acoustic–electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer׳s adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model׳s electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.</description><subject>Acoustics</subject><subject>Channels</subject><subject>Compatibility</subject><subject>Data transmission</subject><subject>Mathematical models</subject><subject>Piezoelectricity</subject><subject>Pressure waves</subject><subject>Transducers</subject><issn>0022-460X</issn><issn>1095-8568</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1KxEAQhRtRcBw9gLss3SRW56eT4EoG_2BgNirumk6nGjsknbErM-DOO3hDT2IPce2qKOp7xXuPsUsOCQcurruko32SAi8SyBPI-BFbcKiLuCpEdcwWAGka5wLeTtkZUQcAdZ7lC_a6cRi3dkBHdnSqj7YeiXYeo8krRwZ9NIwt9hSZ0UdKjzuarP75-sYe9eStnrnB0kEf6XflXKDP2YlRPeHF31yyl_u759VjvN48PK1u17HORDbFDXJsciOKWnBVVlWOAhXUZdqYFGvkuqnCKRNGQYllWLSuagTeokZlELMlu5r_bv34sUOaZHCise-Vw2BV8rLICi7SOg0on1HtRyKPRm69HZT_lBzkoUPZydChPHQoIZehw6C5mTUhEu4teknaotPYWh_iy3a0_6h_Adr0ff0</recordid><startdate>20150915</startdate><enddate>20150915</enddate><creator>Wilt, K.R.</creator><creator>Lawry, T.J.</creator><creator>Scarton, H.A.</creator><creator>Saulnier, G.J.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><orcidid>https://orcid.org/0000-0001-9532-569X</orcidid></search><sort><creationdate>20150915</creationdate><title>One-dimensional pressure transfer models for acoustic–electric transmission channels</title><author>Wilt, K.R. ; Lawry, T.J. ; Scarton, H.A. ; Saulnier, G.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c363t-be1eb4f65961a7884e6ea0972bf2e9e1cb859636fa07e7b85cc89e01deceafee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Acoustics</topic><topic>Channels</topic><topic>Compatibility</topic><topic>Data transmission</topic><topic>Mathematical models</topic><topic>Piezoelectricity</topic><topic>Pressure waves</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wilt, K.R.</creatorcontrib><creatorcontrib>Lawry, T.J.</creatorcontrib><creatorcontrib>Scarton, H.A.</creatorcontrib><creatorcontrib>Saulnier, G.J.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><jtitle>Journal of sound and vibration</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wilt, K.R.</au><au>Lawry, T.J.</au><au>Scarton, H.A.</au><au>Saulnier, G.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-dimensional pressure transfer models for acoustic–electric transmission channels</atitle><jtitle>Journal of sound and vibration</jtitle><date>2015-09-15</date><risdate>2015</risdate><volume>352</volume><spage>158</spage><epage>173</epage><pages>158-173</pages><issn>0022-460X</issn><eissn>1095-8568</eissn><abstract>A method for modeling piezoelectric-based ultrasonic acoustic–electric power and data transmission channels is presented. These channels employ piezoelectric disk transducers to convey signals across a series of physical layers using ultrasonic waves. This model decomposes the mechanical pathway of the signal into individual ultrasonic propagation layers which are generally independent of the layer׳s adjacent domains. Each layer is represented by a two-by-two traveling pressure wave transfer matrix which relates the forward and reverse pressure waves on one side of the layer to the pressure waves on the opposite face, where each face is assumed to be in contact with a domain of arbitrary reference acoustic impedance. A rigorous implementation of ultrasonic beam spreading is introduced and implemented within applicable domains. Compatible pressure-wave models for piezoelectric transducers are given, which relate the electric voltage and current interface of the transducer to the pressure waves on one mechanical interface while also allowing for passive acoustic loading of the secondary mechanical interface. It is also shown that the piezoelectric model׳s electrical interface is compatible with transmission line parameters (ABCD-parameters), allowing for connection of electronic components and networks. The model is shown to be capable of reproducing the behavior of realistic physical channels.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.jsv.2015.04.031</doi><tpages>16</tpages><orcidid>https://orcid.org/0000-0001-9532-569X</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-460X
ispartof Journal of sound and vibration, 2015-09, Vol.352, p.158-173
issn 0022-460X
1095-8568
language eng
recordid cdi_proquest_miscellaneous_1753516292
source ScienceDirect Journals
subjects Acoustics
Channels
Compatibility
Data transmission
Mathematical models
Piezoelectricity
Pressure waves
Transducers
title One-dimensional pressure transfer models for acoustic–electric transmission channels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T13%3A09%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-dimensional%20pressure%20transfer%20models%20for%20acoustic%E2%80%93electric%20transmission%20channels&rft.jtitle=Journal%20of%20sound%20and%20vibration&rft.au=Wilt,%20K.R.&rft.date=2015-09-15&rft.volume=352&rft.spage=158&rft.epage=173&rft.pages=158-173&rft.issn=0022-460X&rft.eissn=1095-8568&rft_id=info:doi/10.1016/j.jsv.2015.04.031&rft_dat=%3Cproquest_cross%3E1753516292%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c363t-be1eb4f65961a7884e6ea0972bf2e9e1cb859636fa07e7b85cc89e01deceafee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1753516292&rft_id=info:pmid/&rfr_iscdi=true