Loading…

Adsorption, Mobility, and Self-Association of Naphthalene and 1‑Methylnaphthalene at the Water–Vapor Interface

The adsorption, mobility, and self-association of naphthalene (NPH) and 1-methylnaphthalene (1MN), two of the simplest polycyclic aromatic hydrocarbons (PAHs), at the surface of liquid water at 289 K were investigated using classical molecular dynamics (MD) simulations and free energy profile calcul...

Full description

Saved in:
Bibliographic Details
Published in:The journal of physical chemistry. A, Molecules, spectroscopy, kinetics, environment, & general theory Molecules, spectroscopy, kinetics, environment, & general theory, 2014-02, Vol.118 (6), p.1052-1066
Main Authors: Gladich, Ivan, Habartová, Alena, Roeselová, Martina
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The adsorption, mobility, and self-association of naphthalene (NPH) and 1-methylnaphthalene (1MN), two of the simplest polycyclic aromatic hydrocarbons (PAHs), at the surface of liquid water at 289 K were investigated using classical molecular dynamics (MD) simulations and free energy profile calculations across the water–vapor interface. Both NPH and 1MN, which exhibit a strong preference to be adsorbed at the water–vapor interface, are found to readily self-associate at the water surface, adopting mostly configurations with distinctly nonparallel arrangement of the two monomers. The additional methyl group of 1MN represents only a minor perturbation in terms of the hydration properties, interfacial orientation, and self-association with respect to NPH. Implications of the observed self-association behavior for fluorescence spectroscopy of NPH and 1MN in aqueous interfacial environment are discussed.
ISSN:1089-5639
1520-5215
DOI:10.1021/jp408977b