Loading…
Numerical simulation of superhalo electrons generated by magnetic reconnection in the solar wind source region
Superhalo electrons appear to be continuously present in the interplane- tary medium, even during very quiet times, with a power-law spectrum at energies above ~2 keV. Here we numerically investigate the generation of superhalo electrons by magnetic reconnection in the solar wind source region, usin...
Saved in:
Published in: | Research in astronomy and astrophysics 2015-03, Vol.15 (3), p.348-362 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Superhalo electrons appear to be continuously present in the interplane- tary medium, even during very quiet times, with a power-law spectrum at energies above ~2 keV. Here we numerically investigate the generation of superhalo electrons by magnetic reconnection in the solar wind source region, using magnetohydrody- namics and test particle simulations for both single X-line reconnection and multiple X-line reconnection. We find that the direct current electric field, produced in the mag- netic reconnection region, can accelerate electrons from an initial thermal energy of T ~105 K up to hundreds of keV. After acceleration, some of the accelerated elec- trons, together with the nascent solar wind flow driven by the reconnection, propagate upwards along the newly-opened magnetic field lines into interplanetary space, while the rest move downwards into the lower atmosphere. Similar to the observed superhalo electrons at 1 AU, the flux of upward-traveling accelerated electrons versus energy dis- plays a power-law distribution at ~ 2-100 keV, f(E)~ E^-δ, with a 6 of ~1.5 - 2.4. For single (multiple) X-line reconnection, the spectrum becomes harder (softer) as the anomalous resistivity parameter a (uniform resistivity η) increases. These modeling results suggest that the acceleration in the solar wind source region may contribute to superhalo electrons. |
---|---|
ISSN: | 1674-4527 2397-6209 |
DOI: | 10.1088/1674-4527/15/3/005 |