Loading…

Characteristics of a long and stable filamentary argon plasma jet generated in ambient atmosphere

We present a study of a long (up to 60 mm) and thin (600 μm) plasma jet generated at 13.56 MHz in argon expanding in an open atmosphere from inside of a thin glass tube. The discharge is operated with one annular external electrode on the tube, in the absence of any grounded electrode in the dischar...

Full description

Saved in:
Bibliographic Details
Published in:Plasma sources science & technology 2015-04, Vol.24 (2), p.25033-8
Main Authors: Teodorescu, M, Bazavan, M, Ionita, E R, Dinescu, G
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We present a study of a long (up to 60 mm) and thin (600 μm) plasma jet generated at 13.56 MHz in argon expanding in an open atmosphere from inside of a thin glass tube. The discharge is operated with one annular external electrode on the tube, in the absence of any grounded electrode in the discharge proximity. The study comprises image, spectral and electrical measurements, aiming to define and understand the operating domains of this plasma jet source. Two plasma zones were identified, which coexist: a long filament accompanied by a diffuse discharge. The coexistence of these plasma zones was studied in the power-mass flow rate parameter space. An electric model is proposed, considering the jet as a radiating antenna, which allows the determination of the main electrical parameters like capacitance, resistance and active RF power dissipated in the discharge. The specific zones on the I-V characteristics were assigned to the operating domains observed visually. The spectral emission of plasma has been used to characterize the jet in respect to the gas temperature, excitation temperature and plasma density.
ISSN:0963-0252
1361-6595
DOI:10.1088/0963-0252/24/2/025033