Loading…
Synoptic and thermodynamic characteristics of 30 March–2 April 2009 heavy rainfall event in Iran
A heavy rainfall event during the period from 30th of March to 2nd of April 2009 has been studied using upper air and surface data as well as NOAA HYSPLIT model. This observational study attempts to determine factors responsible for the occurrence of heavy rainfall over Iran induced by Mediterranean...
Saved in:
Published in: | Meteorology and atmospheric physics 2014-10, Vol.126 (1-2), p.49-63 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A heavy rainfall event during the period from 30th of March to 2nd of April 2009 has been studied using upper air and surface data as well as NOAA HYSPLIT model. This observational study attempts to determine factors responsible for the occurrence of heavy rainfall over Iran induced by Mediterranean cyclone, a western severe sub-tropical storm that made rainfall on most regions of the country. On the surface chart, cyclones, anticyclones and weather fronts were identified. The positions of the cold and warm fronts, which extended from a two-core low pressure center, were quite in good agreements with directions of winds i.e., westerly, southerly and easterly flows as well as the regions of precipitation. The heavy rain event occurred due to a Mediterranean cyclone’s activity over the study area, while other conditions were also responsible for this event such as an unstable atmosphere condition with abundant low-level moisture, which the warm and moist air parcels were brought by the southwesterly low-level jet into the country from Persian Gulf, Oman Sea, Indian Ocean and Caspian Sea at lower levels as well as Mediterranean Sea, Red Sea and Persian Gulf at upper levels over the examined period. A strong low-level convergence zone was observed along the wind-shift line between the southwesterly flow because of the low-level jet and the northeasterly flow due to the Russian high pressure. The amount of precipitable water varied between 20 and 24 kg m
−2
, surface moisture convergence exceeded 2.5 g kg
−1
s
−1
and the highest CAPE value in the sounding profiles was observed in Birjand site with 921 J kg
−1
during the study period. The HYSPLIT model outputs confirmed the observed synoptic features for the examined system over the country. |
---|---|
ISSN: | 0177-7971 1436-5065 |
DOI: | 10.1007/s00703-014-0339-z |