Loading…

Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex

We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d , there is a constant c d > 0 such that whenever X 1 , … , X d + 1 are n -element subsets of R d , we can find a point p ∈ R d and subsets Y i ⊆ X i for every i ∈ [ d + 1 ] , each...

Full description

Saved in:
Bibliographic Details
Published in:Discrete & computational geometry 2015-10, Vol.54 (3), p.610-636
Main Authors: Karasev, Roman, Kynčl, Jan, Paták, Pavel, Patáková, Zuzana, Tancer, Martin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3
cites cdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3
container_end_page 636
container_issue 3
container_start_page 610
container_title Discrete & computational geometry
container_volume 54
creator Karasev, Roman
Kynčl, Jan
Paták, Pavel
Patáková, Zuzana
Tancer, Martin
description We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d , there is a constant c d > 0 such that whenever X 1 , … , X d + 1 are n -element subsets of R d , we can find a point p ∈ R d and subsets Y i ⊆ X i for every i ∈ [ d + 1 ] , each of size at least c d n , such that p belongs to all rainbow d -simplices determined by Y 1 , … , Y d + 1 , i.e., simplices with one vertex in each Y i . We show a super-exponentially decreasing upper bound c d ≤ e - ( 1 / 2 - o ( 1 ) ) ( d ln d ) . The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with c d ≥ 2 - 2 d 2 + O ( d ) , which is a lower bound doubly exponentially decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with c d ≥ 2 - O ( d 2 log d ) . In our construction for the upper bound, we use the fact that the minimum solid angle of every d -simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only d + 1 separations are necessary, compared to 2 d separations in the original proof. We also provide a measure version of Pach’s theorem.
doi_str_mv 10.1007/s00454-015-9720-z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753520016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3796431161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgUQpPACbJRaWwPVPmngsiD-pCETLbLnOTZsqsYvdSNCJ1-D1eBJSyoCQmO7ynaOrQ8gxgzMGkJ1HAJnKBFiaqIxDst4hPSYFT0BKuUt6wDKVpCIb7JODGBfQcQV5jzxd-NYVkZY-0Edj55_vH5GOsUa7qryjkzn6gA01rvgmqznS-8pVTdvQsa-rgg7drEZaOWrouGqWNb4ekr3S1BGPfm6fPF9fTS5vk9HDzd3lcJRYydQqERyZzQZTyXMQmUpVIU2ZA-ZKQVnY3BZGmNxwOy1RSVGUuU2tYkbBFLOCo-iT023vMviXFuNKN1W0WNfGoW-jZlkqUg7ABh09-UMXvg2u-65ToHjKBFedYltlg48xYKmXoWpMeNMM9GZlvV1Zdyvrzcp63WX4NhM762YYfjX_G_oCQ0N_7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709251329</pqid></control><display><type>article</type><title>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</title><source>Springer Link</source><creator>Karasev, Roman ; Kynčl, Jan ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin</creator><creatorcontrib>Karasev, Roman ; Kynčl, Jan ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin</creatorcontrib><description>We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d , there is a constant c d &gt; 0 such that whenever X 1 , … , X d + 1 are n -element subsets of R d , we can find a point p ∈ R d and subsets Y i ⊆ X i for every i ∈ [ d + 1 ] , each of size at least c d n , such that p belongs to all rainbow d -simplices determined by Y 1 , … , Y d + 1 , i.e., simplices with one vertex in each Y i . We show a super-exponentially decreasing upper bound c d ≤ e - ( 1 / 2 - o ( 1 ) ) ( d ln d ) . The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with c d ≥ 2 - 2 d 2 + O ( d ) , which is a lower bound doubly exponentially decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with c d ≥ 2 - O ( d 2 log d ) . In our construction for the upper bound, we use the fact that the minimum solid angle of every d -simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only d + 1 separations are necessary, compared to 2 d separations in the original proof. We also provide a measure version of Pach’s theorem.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-015-9720-z</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Constants ; Density ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Proving ; Separation ; Texts ; Theorems ; Upper bounds</subject><ispartof>Discrete &amp; computational geometry, 2015-10, Vol.54 (3), p.610-636</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</citedby><cites>FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</cites><orcidid>0000-0003-4908-4703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Karasev, Roman</creatorcontrib><creatorcontrib>Kynčl, Jan</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><title>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</title><title>Discrete &amp; computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d , there is a constant c d &gt; 0 such that whenever X 1 , … , X d + 1 are n -element subsets of R d , we can find a point p ∈ R d and subsets Y i ⊆ X i for every i ∈ [ d + 1 ] , each of size at least c d n , such that p belongs to all rainbow d -simplices determined by Y 1 , … , Y d + 1 , i.e., simplices with one vertex in each Y i . We show a super-exponentially decreasing upper bound c d ≤ e - ( 1 / 2 - o ( 1 ) ) ( d ln d ) . The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with c d ≥ 2 - 2 d 2 + O ( d ) , which is a lower bound doubly exponentially decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with c d ≥ 2 - O ( d 2 log d ) . In our construction for the upper bound, we use the fact that the minimum solid angle of every d -simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only d + 1 separations are necessary, compared to 2 d separations in the original proof. We also provide a measure version of Pach’s theorem.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constants</subject><subject>Density</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Proving</subject><subject>Separation</subject><subject>Texts</subject><subject>Theorems</subject><subject>Upper bounds</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgUQpPACbJRaWwPVPmngsiD-pCETLbLnOTZsqsYvdSNCJ1-D1eBJSyoCQmO7ynaOrQ8gxgzMGkJ1HAJnKBFiaqIxDst4hPSYFT0BKuUt6wDKVpCIb7JODGBfQcQV5jzxd-NYVkZY-0Edj55_vH5GOsUa7qryjkzn6gA01rvgmqznS-8pVTdvQsa-rgg7drEZaOWrouGqWNb4ekr3S1BGPfm6fPF9fTS5vk9HDzd3lcJRYydQqERyZzQZTyXMQmUpVIU2ZA-ZKQVnY3BZGmNxwOy1RSVGUuU2tYkbBFLOCo-iT023vMviXFuNKN1W0WNfGoW-jZlkqUg7ABh09-UMXvg2u-65ToHjKBFedYltlg48xYKmXoWpMeNMM9GZlvV1Zdyvrzcp63WX4NhM762YYfjX_G_oCQ0N_7Q</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Karasev, Roman</creator><creator>Kynčl, Jan</creator><creator>Paták, Pavel</creator><creator>Patáková, Zuzana</creator><creator>Tancer, Martin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4908-4703</orcidid></search><sort><creationdate>20151001</creationdate><title>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</title><author>Karasev, Roman ; Kynčl, Jan ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constants</topic><topic>Density</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Proving</topic><topic>Separation</topic><topic>Texts</topic><topic>Theorems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karasev, Roman</creatorcontrib><creatorcontrib>Kynčl, Jan</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete &amp; computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karasev, Roman</au><au>Kynčl, Jan</au><au>Paták, Pavel</au><au>Patáková, Zuzana</au><au>Tancer, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</atitle><jtitle>Discrete &amp; computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>54</volume><issue>3</issue><spage>610</spage><epage>636</epage><pages>610-636</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d , there is a constant c d &gt; 0 such that whenever X 1 , … , X d + 1 are n -element subsets of R d , we can find a point p ∈ R d and subsets Y i ⊆ X i for every i ∈ [ d + 1 ] , each of size at least c d n , such that p belongs to all rainbow d -simplices determined by Y 1 , … , Y d + 1 , i.e., simplices with one vertex in each Y i . We show a super-exponentially decreasing upper bound c d ≤ e - ( 1 / 2 - o ( 1 ) ) ( d ln d ) . The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with c d ≥ 2 - 2 d 2 + O ( d ) , which is a lower bound doubly exponentially decreasing in d (up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with c d ≥ 2 - O ( d 2 log d ) . In our construction for the upper bound, we use the fact that the minimum solid angle of every d -simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only d + 1 separations are necessary, compared to 2 d separations in the original proof. We also provide a measure version of Pach’s theorem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-015-9720-z</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4908-4703</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0179-5376
ispartof Discrete & computational geometry, 2015-10, Vol.54 (3), p.610-636
issn 0179-5376
1432-0444
language eng
recordid cdi_proquest_miscellaneous_1753520016
source Springer Link
subjects Combinatorics
Computational Mathematics and Numerical Analysis
Constants
Density
Lower bounds
Mathematics
Mathematics and Statistics
Proving
Separation
Texts
Theorems
Upper bounds
title Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20for%20Pach%E2%80%99s%20Selection%20Theorem%20and%20for%20the%20Minimum%20Solid%20Angle%20in%20a%20Simplex&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Karasev,%20Roman&rft.date=2015-10-01&rft.volume=54&rft.issue=3&rft.spage=610&rft.epage=636&rft.pages=610-636&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-015-9720-z&rft_dat=%3Cproquest_cross%3E3796431161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709251329&rft_id=info:pmid/&rfr_iscdi=true