Loading…
Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex
We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer d , there is a constant c d > 0 such that whenever X 1 , … , X d + 1 are n -element subsets of R d , we can find a point p ∈ R d and subsets Y i ⊆ X i for every i ∈ [ d + 1 ] , each...
Saved in:
Published in: | Discrete & computational geometry 2015-10, Vol.54 (3), p.610-636 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3 |
container_end_page | 636 |
container_issue | 3 |
container_start_page | 610 |
container_title | Discrete & computational geometry |
container_volume | 54 |
creator | Karasev, Roman Kynčl, Jan Paták, Pavel Patáková, Zuzana Tancer, Martin |
description | We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer
d
, there is a constant
c
d
>
0
such that whenever
X
1
,
…
,
X
d
+
1
are
n
-element subsets of
R
d
, we can find a point
p
∈
R
d
and subsets
Y
i
⊆
X
i
for every
i
∈
[
d
+
1
]
, each of size at least
c
d
n
, such that
p
belongs to all
rainbow
d
-simplices determined by
Y
1
,
…
,
Y
d
+
1
, i.e., simplices with one vertex in each
Y
i
. We show a super-exponentially decreasing upper bound
c
d
≤
e
-
(
1
/
2
-
o
(
1
)
)
(
d
ln
d
)
. The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with
c
d
≥
2
-
2
d
2
+
O
(
d
)
, which is a lower bound doubly exponentially decreasing in
d
(up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with
c
d
≥
2
-
O
(
d
2
log
d
)
. In our construction for the upper bound, we use the fact that the minimum solid angle of every
d
-simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only
d
+
1
separations are necessary, compared to
2
d
separations in the original proof. We also provide a measure version of Pach’s theorem. |
doi_str_mv | 10.1007/s00454-015-9720-z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1753520016</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3796431161</sourcerecordid><originalsourceid>FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</originalsourceid><addsrcrecordid>eNp10L1OwzAUBWALgUQpPACbJRaWwPVPmngsiD-pCETLbLnOTZsqsYvdSNCJ1-D1eBJSyoCQmO7ynaOrQ8gxgzMGkJ1HAJnKBFiaqIxDst4hPSYFT0BKuUt6wDKVpCIb7JODGBfQcQV5jzxd-NYVkZY-0Edj55_vH5GOsUa7qryjkzn6gA01rvgmqznS-8pVTdvQsa-rgg7drEZaOWrouGqWNb4ekr3S1BGPfm6fPF9fTS5vk9HDzd3lcJRYydQqERyZzQZTyXMQmUpVIU2ZA-ZKQVnY3BZGmNxwOy1RSVGUuU2tYkbBFLOCo-iT023vMviXFuNKN1W0WNfGoW-jZlkqUg7ABh09-UMXvg2u-65ToHjKBFedYltlg48xYKmXoWpMeNMM9GZlvV1Zdyvrzcp63WX4NhM762YYfjX_G_oCQ0N_7Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1709251329</pqid></control><display><type>article</type><title>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</title><source>Springer Link</source><creator>Karasev, Roman ; Kynčl, Jan ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin</creator><creatorcontrib>Karasev, Roman ; Kynčl, Jan ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin</creatorcontrib><description>We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer
d
, there is a constant
c
d
>
0
such that whenever
X
1
,
…
,
X
d
+
1
are
n
-element subsets of
R
d
, we can find a point
p
∈
R
d
and subsets
Y
i
⊆
X
i
for every
i
∈
[
d
+
1
]
, each of size at least
c
d
n
, such that
p
belongs to all
rainbow
d
-simplices determined by
Y
1
,
…
,
Y
d
+
1
, i.e., simplices with one vertex in each
Y
i
. We show a super-exponentially decreasing upper bound
c
d
≤
e
-
(
1
/
2
-
o
(
1
)
)
(
d
ln
d
)
. The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with
c
d
≥
2
-
2
d
2
+
O
(
d
)
, which is a lower bound doubly exponentially decreasing in
d
(up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with
c
d
≥
2
-
O
(
d
2
log
d
)
. In our construction for the upper bound, we use the fact that the minimum solid angle of every
d
-simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only
d
+
1
separations are necessary, compared to
2
d
separations in the original proof. We also provide a measure version of Pach’s theorem.</description><identifier>ISSN: 0179-5376</identifier><identifier>EISSN: 1432-0444</identifier><identifier>DOI: 10.1007/s00454-015-9720-z</identifier><identifier>CODEN: DCGEER</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Combinatorics ; Computational Mathematics and Numerical Analysis ; Constants ; Density ; Lower bounds ; Mathematics ; Mathematics and Statistics ; Proving ; Separation ; Texts ; Theorems ; Upper bounds</subject><ispartof>Discrete & computational geometry, 2015-10, Vol.54 (3), p.610-636</ispartof><rights>Springer Science+Business Media New York 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</citedby><cites>FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</cites><orcidid>0000-0003-4908-4703</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids></links><search><creatorcontrib>Karasev, Roman</creatorcontrib><creatorcontrib>Kynčl, Jan</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><title>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</title><title>Discrete & computational geometry</title><addtitle>Discrete Comput Geom</addtitle><description>We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer
d
, there is a constant
c
d
>
0
such that whenever
X
1
,
…
,
X
d
+
1
are
n
-element subsets of
R
d
, we can find a point
p
∈
R
d
and subsets
Y
i
⊆
X
i
for every
i
∈
[
d
+
1
]
, each of size at least
c
d
n
, such that
p
belongs to all
rainbow
d
-simplices determined by
Y
1
,
…
,
Y
d
+
1
, i.e., simplices with one vertex in each
Y
i
. We show a super-exponentially decreasing upper bound
c
d
≤
e
-
(
1
/
2
-
o
(
1
)
)
(
d
ln
d
)
. The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with
c
d
≥
2
-
2
d
2
+
O
(
d
)
, which is a lower bound doubly exponentially decreasing in
d
(up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with
c
d
≥
2
-
O
(
d
2
log
d
)
. In our construction for the upper bound, we use the fact that the minimum solid angle of every
d
-simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only
d
+
1
separations are necessary, compared to
2
d
separations in the original proof. We also provide a measure version of Pach’s theorem.</description><subject>Combinatorics</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Constants</subject><subject>Density</subject><subject>Lower bounds</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Proving</subject><subject>Separation</subject><subject>Texts</subject><subject>Theorems</subject><subject>Upper bounds</subject><issn>0179-5376</issn><issn>1432-0444</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp10L1OwzAUBWALgUQpPACbJRaWwPVPmngsiD-pCETLbLnOTZsqsYvdSNCJ1-D1eBJSyoCQmO7ynaOrQ8gxgzMGkJ1HAJnKBFiaqIxDst4hPSYFT0BKuUt6wDKVpCIb7JODGBfQcQV5jzxd-NYVkZY-0Edj55_vH5GOsUa7qryjkzn6gA01rvgmqznS-8pVTdvQsa-rgg7drEZaOWrouGqWNb4ekr3S1BGPfm6fPF9fTS5vk9HDzd3lcJRYydQqERyZzQZTyXMQmUpVIU2ZA-ZKQVnY3BZGmNxwOy1RSVGUuU2tYkbBFLOCo-iT023vMviXFuNKN1W0WNfGoW-jZlkqUg7ABh09-UMXvg2u-65ToHjKBFedYltlg48xYKmXoWpMeNMM9GZlvV1Zdyvrzcp63WX4NhM762YYfjX_G_oCQ0N_7Q</recordid><startdate>20151001</startdate><enddate>20151001</enddate><creator>Karasev, Roman</creator><creator>Kynčl, Jan</creator><creator>Paták, Pavel</creator><creator>Patáková, Zuzana</creator><creator>Tancer, Martin</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0003-4908-4703</orcidid></search><sort><creationdate>20151001</creationdate><title>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</title><author>Karasev, Roman ; Kynčl, Jan ; Paták, Pavel ; Patáková, Zuzana ; Tancer, Martin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Combinatorics</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Constants</topic><topic>Density</topic><topic>Lower bounds</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Proving</topic><topic>Separation</topic><topic>Texts</topic><topic>Theorems</topic><topic>Upper bounds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Karasev, Roman</creatorcontrib><creatorcontrib>Kynčl, Jan</creatorcontrib><creatorcontrib>Paták, Pavel</creatorcontrib><creatorcontrib>Patáková, Zuzana</creatorcontrib><creatorcontrib>Tancer, Martin</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Discrete & computational geometry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Karasev, Roman</au><au>Kynčl, Jan</au><au>Paták, Pavel</au><au>Patáková, Zuzana</au><au>Tancer, Martin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex</atitle><jtitle>Discrete & computational geometry</jtitle><stitle>Discrete Comput Geom</stitle><date>2015-10-01</date><risdate>2015</risdate><volume>54</volume><issue>3</issue><spage>610</spage><epage>636</epage><pages>610-636</pages><issn>0179-5376</issn><eissn>1432-0444</eissn><coden>DCGEER</coden><abstract>We estimate the selection constant in the following geometric selection theorem by Pach: For every positive integer
d
, there is a constant
c
d
>
0
such that whenever
X
1
,
…
,
X
d
+
1
are
n
-element subsets of
R
d
, we can find a point
p
∈
R
d
and subsets
Y
i
⊆
X
i
for every
i
∈
[
d
+
1
]
, each of size at least
c
d
n
, such that
p
belongs to all
rainbow
d
-simplices determined by
Y
1
,
…
,
Y
d
+
1
, i.e., simplices with one vertex in each
Y
i
. We show a super-exponentially decreasing upper bound
c
d
≤
e
-
(
1
/
2
-
o
(
1
)
)
(
d
ln
d
)
. The ideas used in the proof of the upper bound also help us to prove Pach’s theorem with
c
d
≥
2
-
2
d
2
+
O
(
d
)
, which is a lower bound doubly exponentially decreasing in
d
(up to some polynomial in the exponent). For comparison, Pach’s original approach yields a triply exponentially decreasing lower bound. On the other hand, Fox, Pach, and Suk recently obtained a hypergraph density result implying a proof of Pach’s theorem with
c
d
≥
2
-
O
(
d
2
log
d
)
. In our construction for the upper bound, we use the fact that the minimum solid angle of every
d
-simplex is super-exponentially small. This fact was previously unknown and might be of independent interest. For the lower bound, we improve the ‘separation’ part of the argument by showing that in one of the key steps only
d
+
1
separations are necessary, compared to
2
d
separations in the original proof. We also provide a measure version of Pach’s theorem.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00454-015-9720-z</doi><tpages>27</tpages><orcidid>https://orcid.org/0000-0003-4908-4703</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0179-5376 |
ispartof | Discrete & computational geometry, 2015-10, Vol.54 (3), p.610-636 |
issn | 0179-5376 1432-0444 |
language | eng |
recordid | cdi_proquest_miscellaneous_1753520016 |
source | Springer Link |
subjects | Combinatorics Computational Mathematics and Numerical Analysis Constants Density Lower bounds Mathematics Mathematics and Statistics Proving Separation Texts Theorems Upper bounds |
title | Bounds for Pach’s Selection Theorem and for the Minimum Solid Angle in a Simplex |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-24T22%3A20%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Bounds%20for%20Pach%E2%80%99s%20Selection%20Theorem%20and%20for%20the%20Minimum%20Solid%20Angle%20in%20a%20Simplex&rft.jtitle=Discrete%20&%20computational%20geometry&rft.au=Karasev,%20Roman&rft.date=2015-10-01&rft.volume=54&rft.issue=3&rft.spage=610&rft.epage=636&rft.pages=610-636&rft.issn=0179-5376&rft.eissn=1432-0444&rft.coden=DCGEER&rft_id=info:doi/10.1007/s00454-015-9720-z&rft_dat=%3Cproquest_cross%3E3796431161%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c419t-32e1c76b428037959d4af80e8990fdc8cda3a8a2cbfe943df8c5c91a90be7d2e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1709251329&rft_id=info:pmid/&rfr_iscdi=true |