Loading…
Silica gel-encapsulated AtzA biocatalyst for atrazine biodegradation
Encapsulation of recombinant Escherichia coli cells expressing a biocatalyst has the potential to produce stable, long-lasting enzyme activity that can be used for numerous applications. The current study describes the use of this technology with recombinant E. coli cells expressing the atrazine-dec...
Saved in:
Published in: | Applied microbiology and biotechnology 2012-10, Vol.96 (1), p.231-240 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Encapsulation of recombinant
Escherichia coli
cells expressing a biocatalyst has the potential to produce stable, long-lasting enzyme activity that can be used for numerous applications. The current study describes the use of this technology with recombinant
E. coli
cells expressing the atrazine-dechlorinating enzyme AtzA in a silica/polymer porous gel. This novel recombinant enzyme-based method utilizes both adsorption and degradation to remove atrazine from water. A combination of silica nanoparticles (Ludox TM40), alkoxides, and an organic polymer was used to synthesize a porous gel. Gel curing temperatures of 23 or 45 °C were used either to maintain cell viability or to render the cells non-viable, respectively. The enzymatic activity of the encapsulated viable and non-viable cells was high and extremely stable over the time period analyzed. At room temperature, the encapsulated non-viable cells maintained a specific activity between (0.44 ± 0.06) μmol/g/min and (0.66 ± 0.12) μmol/g/min for up to 4 months, comparing well with free, viable cell-specific activities (0.61 ± 0.04 μmol/g/min). Gels cured at 45 °C had excellent structural rigidity and contained few viable cells, making these gels potentially compatible with water treatment facility applications. When encapsulated, non-viable cells were assayed at 4 °C, the activity increased threefold over free cells, potentially due to differences in lipid membranes as shown by FTIR spectroscopy and electron microscopy. |
---|---|
ISSN: | 0175-7598 1432-0614 |
DOI: | 10.1007/s00253-011-3821-2 |