Loading…

Silica gel-encapsulated AtzA biocatalyst for atrazine biodegradation

Encapsulation of recombinant Escherichia coli cells expressing a biocatalyst has the potential to produce stable, long-lasting enzyme activity that can be used for numerous applications. The current study describes the use of this technology with recombinant E. coli cells expressing the atrazine-dec...

Full description

Saved in:
Bibliographic Details
Published in:Applied microbiology and biotechnology 2012-10, Vol.96 (1), p.231-240
Main Authors: Reátegui, Eduardo, Reynolds, Erik, Kasinkas, Lisa, Aggarwal, Amit, Sadowsky, Michael J., Aksan, Alptekin, Wackett, Lawrence P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Encapsulation of recombinant Escherichia coli cells expressing a biocatalyst has the potential to produce stable, long-lasting enzyme activity that can be used for numerous applications. The current study describes the use of this technology with recombinant E. coli cells expressing the atrazine-dechlorinating enzyme AtzA in a silica/polymer porous gel. This novel recombinant enzyme-based method utilizes both adsorption and degradation to remove atrazine from water. A combination of silica nanoparticles (Ludox TM40), alkoxides, and an organic polymer was used to synthesize a porous gel. Gel curing temperatures of 23 or 45 °C were used either to maintain cell viability or to render the cells non-viable, respectively. The enzymatic activity of the encapsulated viable and non-viable cells was high and extremely stable over the time period analyzed. At room temperature, the encapsulated non-viable cells maintained a specific activity between (0.44 ± 0.06) μmol/g/min and (0.66 ± 0.12) μmol/g/min for up to 4 months, comparing well with free, viable cell-specific activities (0.61 ± 0.04 μmol/g/min). Gels cured at 45 °C had excellent structural rigidity and contained few viable cells, making these gels potentially compatible with water treatment facility applications. When encapsulated, non-viable cells were assayed at 4 °C, the activity increased threefold over free cells, potentially due to differences in lipid membranes as shown by FTIR spectroscopy and electron microscopy.
ISSN:0175-7598
1432-0614
DOI:10.1007/s00253-011-3821-2