Loading…
Dual isotope imaging with LaBr3:Ce crystal and H8500 PSPMT
The introduction of Lanthanum Bromide crystal, characterized by a fast and high light emission, offers the possibility to improve both imaging spatial resolution and energy resolution in SPECT in the 80-300 kev energy range, without compromising detection efficiency. The expected performances may be...
Saved in:
Published in: | Journal of instrumentation 2013-02, Vol.7 (2), p.1-6 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The introduction of Lanthanum Bromide crystal, characterized by a fast and high light emission, offers the possibility to improve both imaging spatial resolution and energy resolution in SPECT in the 80-300 kev energy range, without compromising detection efficiency. The expected performances may be limited if the crystal is used with a multi-anode PMT with Position Sensitive response due to the wide differences in the segmented anode pad gains, ranging from 2:1 to 10:1,. These characteristics may strongly deteriorate the overall energy resolution and, consequently, impair the detector imaging capability. For this reason, a 256 independent channel electronic read out was developed, based on an FPGA control, to individually read the charge on each anode. The electronics features a very low electronic noise (< 1%) and a wide dynamic range. The readout electronics was used to build a gamma camera based on a single 100mm x 100mm continuous LaBr3:Ce crystal coupled to a 2 x 2 array SBA photocatode (38% QE) Hamamatsu H8500. An offline calibration procedure is also shown in order to compensate the anode gain variation and to exploit the LaBr3:Ce capabilities, obtaining on the whole detection area an 8.0-8.5% energy resolution at 140 kev. The high energy resolution performances of this gamma camera permitted to discriminate emissions from two different isotope (Tc super(99m) and Co super(57)) with very close photon energy (140 and 122 kev respectively). This capability can be used to provide the gamma image with references coming from Co super(57) point sources (marker) fixed at known positions. These results confirm the LaBr3:Ce crystals as one of the most interesting for all single photon emission applications. |
---|---|
ISSN: | 1748-0221 1748-0221 |
DOI: | 10.1088/1748-0221/8/02/C02022 |